Влияние хронической болезни почек на формирование диастолической дисфункции сердца у больных ХСН с сохраненной ФВ
https://doi.org/10.18087/cardio.2451
Аннотация
Об авторах
О. Б. КузьминРоссия
В. В. Жежа
Россия
В. В. Белянин
Россия
Н. В. Бучнева
Россия
Список литературы
1. Smith D.H., Thorp M.L., Gurwitz J.H., McManus D.D., Goldberg R.J., Allen L.A. et al. Chronic Kidney Disease and Outcomes in Heart Failure With Preserved Versus Reduced Ejection Fraction: The Cardiovascular Research Network PRESERVE Study. Circulation: Cardiovascular Quality and Outcomes. 2013; 6 (3): 333-42. DOI: 10.1161/CIRCOUTCOMES.113.000221
2. Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Т., Фомин И.В., Бадин Ю.В., Поляков Д.С. и др. Истинная распространенность ХСН в Европейской части Российской Федерации (исследование ЭПОХА, госпитальный этап). Журнал Сердечная Недостаточность. 2011. -12 (2): 63-8. DOI: 10.18087/rhfj.2011.2.1510
3. Gori M., Senni M., Gupta D.K., Charytan D.M., Kraigher-Krainer E., Pieske B. et al. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction. European Heart Journal. 2014; 35 (48): 3442-51. DOI: 10.1093/eurheartj/ehu254
4. Casado J., Montero M., Formiga F., Carrera M., Urrutia A., Arévalo J.C. et al. Clinical characteristics and prognostic influence of renal dysfunction in heart failure patients with preserved ejection fraction. European Journal ofInternal Medicine. 2013; 24 (7): 677-83. DOI: 10.1016/j.ejim.2013.06.003
5. Кузьмин О.Б., Жежа В.В., Белянин В.В., Ландарь Л.Н. Нарушение функции почек у больных ХСН с сохраненной Ф.В. Журнал Сердечная Недостаточность. 2016; 17 (2): 137-43. DOI: 10.18087/rhfj.2016.2.2209
6. Edwards N.C., Ferro C.J., Townend J.N., Steeds R.P. Aortic distensibility and arterial-ventricular coupling in early chronic kidney disease: a pattern resembling heart failure with preserved ejection fraction. Heart. 2008; 94 (8): 1038-43. DOI: 10.1136/hrt.2007.137539
7. Unger E.D., Dubin R.F., Deo R., Daruwalla V., Friedman J.L., Medina C. et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction: CKD and cardiac mechanics in HFpEF. European Journal of Heart Failure. 2016; 18 (1): 103-12. DOI: 10.1002/ejhf.445
8. Katz D.H., Burns J.A., Aguilar F.G., Beussink L., Shah S.J. Albuminuria Is Independently Associated With Cardiac Remodeling, Abnormal Right and Left Ventricular Function, and Worse Outcomes in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure. 2014; 2 (6): 586-96. DOI: 10.1016/j.jchf.2014.05.016
9. Veterovska Miljkovik L., Spiroska V. Heart Failure with Preserved Ejection Fraction - Concept, Pathophysiology, Diagnosis and Challenges for Treatment. Open Access Macedonian Journal of Medical Sciences. 2015; 3 (3): 521. DOI: 10.3889/oamjms.2015.087
10. Borlaug B.A. The pathophysiology of heart failure with preserved ejection fraction. Nature Reviews Cardiology. 2014; 11 (9): 507-15. DOI: 10.1038/nrcardio.2014.83
11. Sharma K., Kass D.A. Heart Failure With Preserved Ejection Fraction: Mechanisms, Clinical Features, and Therapies. Circulation Research. 2014; 115 (1): 79-96. DOI: 10.1161/CIRCRESAHA.115.302922
12. Paulus W.J., Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am Coll Cardiol. 2013; 62 (4): 263-71. DOI: 10.1016/j.jacc.2013.02.092
13. Mohammed SF, Hussain S., Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield M.M. Coronary Microvascular Rarefaction and Myocardial Fibrosis in Heart Failure With Preserved Ejection Fraction. Circulation. 2015; 131 (6): 550-9. DOI: 10.1161/CIRCULATIONAHA.114.009625
14. Giamouzis G., Schelbert E.B., Butler J. Growing Evidence Linking Microvascular Dysfunction With Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association. 2016; 5(2): e003259. DOI: 10.1161/JAHA.116.003259
15. Franssen C., Chen S., Unger A., Korkmaz H.I., De Keulenaer G.W., Tschöpe C. et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016; 4 (4): 312-24. DOI: 10.1016/j.jchf.2015.10.007
16. van Heerebeek L., Paulus W.J. Understanding heart failure with preserved ejection fraction: where are we today? Netherlands Heart Journal. 2016; 24 (4): 227-36. DOI: 10.1007/s12471-016-0810-1
17. Heger J., Schulz R., Euler G. Molecular switches under TGFß signalling during progression from cardiac hypertrophy to heart failure: TGFß-guided switches to heart failure. British Journal of Pharmacology. 2016; 173 (1): 3-14. DOI: 10.1111/bph.13344
18. Westermann D., Lindner D., Kasner M., Zietsch C., Savvatis K., Escher F. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011; 4 (1): 44-52. DOI: 10.1161/CIRCHEART-FAILURE.109.931451
19. Amdur R.L., Feldman H.I., Gupta J., Yang W., Kanetsky P., Shlipak M. et al. Inflammation and Progression of CKD: The CRIC Study. Clinical Journal of the American Society of Nephrology. 2016; 11 (9): 1546-56. DOI: 10.2215/CJN.13121215
20. Bernelot Moens S.J., Verweij S.L., van der Valk F.M., van Capelleveen J.C., Kroon J., Versloot M. et al. Arterial and Cellular Inflammation in Patients with CKD. Journal of the American Society of Nephrology. 2017; 28 (4): 1278-85. DOI: 10.1681/ASN.2016030317
21. Goligorsky M.S. Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold. Kidney Research and Clinical Practice. 2015; 34 (2): 76-82. DOI: 10.1016/j.krcp.2015.05.003
22. ter Maaten J.M., Damman K., Verhaar M.C., Paulus W.J., Duncker D.J., Cheng C. et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation: HFpEF and renal dysfunction. European Journal of Heart Failure. 2016; 18 (6): 588-98. DOI: 10.1002/ejhf.497
23. Kitzman D.W. Pathophysiological Characterization of Isolated Diastolic Heart Failure in Comparison to Systolic Heart Failure. JAMA. 2002; 288 (17): 2144. DOI: 10.1001/jama.288.17.2144
24. Oda Y., Joho S., Harada D., Hirai T., Asanoi H., Inoue H. Renal insufficiency coexisting with heart failure is related to elevated sympathetic nerve activity. Autonomic Neuroscience. 2010; 155 (1-2): 104-8. DOI: 10.1016/j.autneu.2010.01.005
25. Grassi G., Quarti-Trevano F., Seravalle G., Arenare F., Volpe M., Furiani S. et al. Early Sympathetic Activation in the Initial Clinical Stages of Chronic Renal Failure. Hypertension. 2011; 57 (4): 846-51. DOI: 10.1161/HYPERTENSIONAHA.110.164780
26. Sugiura M., Yamamoto K., Takeda Y., Takeda Y., Dohmori T., Ogata M. et al. The relationship between variables of 123-I-metaiodobenzylguanidine cardiac imaging and clinical status of the patients with diastolic heart failure. International Journal of Cardiology. 2006; 113 (2): 223 DOI: 10.1016/j.ijcard.2005.11.017
27. de Souza S.B.C., Rocha J.A., Cuoco M.A.R., Guerra G.M., Ferreira-Filho J.C., Borile S. et al. High Muscle Sympathetic Nerve Activity Is Associated With Left Ventricular Dysfunction in Treated Hypertensive Patients. American Journal of Hypertension. 2013; 26 (7): 912-7. DOI: 10.1093/ajh/hpt032
28. Angelone T., Filice E., Quintieri A.M., Imbrogno S., Recchia A., Pulerà E. et al. ß3-Adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiologica. 2008; 193 (3): 229-39. DOI: 10.1111/j.1748-1716.2008.01838.x
29. Belge C., Hammond J., Dubois-Deruy E., Manoury B., Hamelet J., Beauloye C. et al. Enhanced Expression of ß3-Adrenoceptors in Cardiac Myocytes Attenuates Neurohormone-Induced Hypertrophic Remodeling Through Nitric Oxide Synthase. Circulation. 2014; 129 (4): 451-62. DOI: 10.1161/CIRCULATIONAHA.113.004940
30. Eschenhagen T. ß-adrenergic signaling in heart failure - adapt or die. Nature Medicine. 2008; 14 (5): 485-7. DOI: 10.1038/nm0508-485
31. Lymperopoulos A., Rengo G., Koch W.J. Adrenergic Nervous System in Heart Failure: Pathophysiology and fjerapy. Circulation Research. 2013; 113 (6): 739-53. DOI: 10.1161/CIRCRESAHA.113.300308
32. Aikawa T., Naya M., Obara M., Manabe O., Tomiyama Y., Magota K. et al. Impaired Myocardial Sympathetic Innervation Is Associated with Diastolic Dysfunction in Heart Failure with Preserved Ejection Fraction: 11 C-Hydroxyephedrine PET Study. Journal of Nuclear Medicine. 2017; 58 (5): 784-90. DOI: 10.2967/jnumed.116.178558
33. Kerkelä R., Ulvila J., Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events.Journal ofthe American Heart Association. 2015; 4 (10): e002423. DOI: 10.1161/JAHA.115.002423
34. Maisel A.S., Shah K.S., Barnard D., Jaski B., Frivold G., Marais J. et al. How B-Type Natriuretic Peptide (BNP) and Body Weight Changes Vary in Heart Failure With Preserved Ejection Fraction Compared With Reduced Ejection Fraction: Secondary Results of the HABIT (HF Assessment With BNP in the Home) Trial. Journal of Cardiac Failure. 2016; 22 (4): 283-93. DOI: 10.1016/j.cardfail.2015.09.014
35. Kang S.-H., Park J.J., Choi D.-J., Yoon C.-H., Oh I.-Y., Kang S.-M. et al. Prognostic value of NT-proBNP in heart failure with preserved versus reduced E.F. Heart. 2015; 101 (23): 1881-8. DOI: 10.1136/heartjnl-2015-307782
36. Ishigaki T., Yoshida T., Izumi H., Fujisawa Y., Shimizu S., Masuda K. et al. Different Implication of Elevated B-Type Natriuretic Peptide Level in Patients with Heart Failure with Preserved Ejection Fraction and in fjose with Reduced Ejection Fraction. Echocardiography. 2015; 32 (4): 623-9. DOI: 10.1111/echo.12707
37. Diez J. Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: implications for therapy: CHF as a state of reduced effectiveness of the NP system. European Journal of Heart Failure. 2017; 19 (2): 167-76. DOI: 10.1002/ejhf.656
38. Katoh S., Shishido T. Kutsuzawa D., Arimoto T., Netsu S., Funayama A. et al. Iodine-123-metaiodobenzylguanidine imaging can predict future cardiac events in heart failure patients with preserved ejection fraction. Annals of Nuclear Medicine. 2010; 24 (9): 679-86. DOI: 10.1007/s12149-010-0409-3
39. Theilig F., Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. American Journal of Physiology - Renal Physiology. 2015; 308 (10): F1047-55. DOI: 10.1152/ajprenal.00164.2014
40. Winaver J., Burnett J.C., Tyce G.M., Dousa T.P. ANP inhibits Na+-H+ antiport in proximal tubular brush border membrane: Role of dopamine. Kidney International. 1990; 38 (6): 1133-40. DOI: 10.1038/ki.1990.323
41. Zhao D., Pandey K.N., Navar L.G. ANP-mediated inhibition of distal nephron fractional sodium reabsorption in wild-type and mice overexpressing natriuretic peptide receptor. American Journal of Physiology-Renal Physiology. 2010; 298 (1): F103-8. DOI: 10.1152/ajprenal.00479.2009
42. Ohashi Y., Saito A., Yamazaki K., Tai R., Matsukiyo T., Aikawa A. et al. Brain Natriuretic Peptide and Body Fluid Composition in Patients with Chronic Kidney Disease: A Cross-Sectional Study to Evaluate the Relationship between Volume Overload and Malnutrition. Cardiorenal Medicine. 2016; 6 (4): 337-46. DOI: 10.1159/000447024
43. Hamrahian S.M., Falkner B. Hypertension in Chronic Kidney Disease. Islam MS, редактор. Hypertension: from basic research to clinical practice [Интернет]. -Cham: Springer International Publishing; 2016 [цитируется по 12 апрель 2018 г.]. с. 307-25.
44. Creemers E.E., Pinto Y.M. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovascular Research. 2011; 89 (2): 265-72. DOI: 10.1093/cvr/cvq308
45. Koell B., Zotter-Tufaro C., Duca F., Kammerlander A.A., Aschauer S., Dalos D. et al. Fluid status and outcome in patients with heart failure and preserved ejection fraction. International Journal of Cardiology. 2017; 230: 476-81. DOI: 10.1016/j.ijcard.2016.12.080
46. Hassan M.O., Duarte R., Dix-Peek T., Vachiat A., Dickens C., Grinter S. et al. Volume overload and its risk factors in South African chronic kidney disease patients: an appraisal of bioimpedance spectroscopy and inferior vena cava measurements. Clinical Nephrology. 2016; 86 (07): 27-34. DOI: 10.5414/CN108778
47. Hung S.-C., Kuo K.-L., Peng C.-H., Wu C.-H., Lien Y.-C., Wang Y.-C. et al. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney International. 2014; 85 (3): 703-9. DOI: 10.1038/ki.2013.336
48. Kim J.-S., Yang J.-W., Yoo J.S., Choi S.O., Han B.-G. Association between E/e' ratio and fluid overload in patients with predialysis chronic kidney disease. Aguilera AI, редактор. PLOS ONE. 2017; 12 (9): e0184764. DOI: 10.1371/journal.pone.0184764
49. Hung S.-C., Lai Y.-S., Kuo K.-L., Tarng D.-C. Volume Overload and Adverse Outcomes in Chronic Kidney Disease: Clinical Observational and Animal Studies. Journal of the American Heart Association. 2015; 4 (5): e001918 - e001918. DOI: 10.1161/JAHA.115.001918
50. Hassan M.O., Duarte R., Dix-Peek T., Vachiat A., Naidoo S., Dickens C. et al. Correlation between volume overload, chronic inflammation, and left ventricular dysfunction in chronic kidney disease patients. Clinical Nephrology. 2016; 86 (S1): 131-5. DOI: 10.5414/CNP86S127
51. Niu X., Watts V.L., Cingolani O.H., Sivakumaran V., Leyton-Mange J.S., Ellis C.L. et al. Cardioprotective Effect of Beta-3 Adrenergic Receptor Agonism. Journal of the American College of Cardiology. 2012; 59 (22): 1979-87. DOI: 10.1016/j.jacc.2011.12.046
52. Bundgaard H., Axelsson A., Hartvig Thomsen J., Sorgaard M., Kofoed K.F., Hasselbalch R. et al. fje first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: the BEAT-HF trial: ß3-adrenoceptor agonist in human heart failure. European Journal of Heart Failure. 2017; 19 (4): 566-75. DOI: 10.1002/ejhf.714
53. Michel L.Y.M., Balligand J.-L. New and Emerging fjerapies and Targets: Beta-3 Agonists. Bauersachs J., Butler J., Sandner P., редакторы. Heart Failure [Интернет]. - Cham: Springer International Publishing; 2016 [цитируется по 12 апрель 2018 г.]. с. 205-23.
54. Voors A.A., Gori M., Liu L.C.Y., Claggett B., Zile M.R., Pieske B. et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction: Renal effects of neprilysin inhibitor LCZ696 in patients with HFpEF. European Journal of Heart Failure. 2015; 17 (5): 510-7. DOI: 10.1002/ejhf.232
55. Zile M.R., Jhund P.S., Baicu C.F., Claggett B.L., Pieske B., Voors A.A. et al. Plasma Biomarkers Reflecting Profibrotic Processes in Heart Failure With a Preserved Ejection Fraction: Data From the Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction Study. Circulation: Heart Failure. 2016; 9(1): e002551. DOI: 10.1161/CIRCHEARTFAILURE.115.002551
56. Кузьмин О.Б., Жежа В.В., Белянин В.В., Бучнева Н.В., Ландарь Л.Н., Сердюк С.В. Клиническая эффективность двойного ингибитора неприлизина и АТ 1-ангиотензиновых рецепторов LCZ696 (сакубитрил/валсартан) у больных ХСН с нарушенной функцией почек. Журнал Сердечная Недостаточность. 2017; 18 (3): 233-40.
Рецензия
Для цитирования:
Кузьмин О.Б., Жежа В.В., Белянин В.В., Бучнева Н.В. Влияние хронической болезни почек на формирование диастолической дисфункции сердца у больных ХСН с сохраненной ФВ. Кардиология. 2018;58(4S):37-45. https://doi.org/10.18087/cardio.2451
For citation:
Kuzmin O.B., Zhezha V.V., Belyanin V.V., Buchneva N.V. Effect of chronic kidney disease on the formation of diastolic heart dysfunction in heart failure patients with preserved ejection fraction. Kardiologiia. 2018;58(4S):37-45. (In Russ.) https://doi.org/10.18087/cardio.2451