ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

The сardiometabolic assessment of the glycemic variability in patients with diabetes mellitus: the role of the glucocardiomonitoring

https://doi.org/10.18087/cardio.2020.5.n902

Abstract

Aim To study quantitatively the two-way relationship between parameters of glycemic variability and development of cardiovascular events in patients with type 2 diabetes mellitus (DM) on chronic sulfonylurea (SM) therapy by synchronous, professional glucose and cardiac monitoring.
Material and methods The study included 421 patients with type 2 DM on SM therapy. A 5-day synchronous glucose and cardiac monitoring was performed for these patients in a retrospective mode using an iPro2 (Medtronic, USA) continuous glycemia monitoring (CGM) system and Holter monitoring. Glycemic endpoints (CGM-parameters of glycemia variability and integral indexes) and cardiological endpoints (ventricular rhythm disorders (VRD), ST segment depression (dST), and corrected QT interval (QTc)) were evaluated.
Results Clear correlations were found between the ST segment depression and the increase in TIR-HYPO index and the length of QTc. The strongest correlation was observed for VRD and the increase in TIR-HYPO. Moderate correlations were observed between VRD and the decrease in TIR-NORMO and between increased variabilities of glycemia (increases in SD and number of glycemia excursions >4 mmol/l/h) and integral indexes (mean CGM-level of glycemia and HbA1c). Elongation of the QTc interval was associated with increased TIR-HYPO, decrease in maximum glycemia, and development of dST.
Conclusion The glucose and cardiac monitoring confirmed the close interrelation between the quality of glycemic control and cardiovascular disorders and should be recommended for a wider use in real-life clinical practice for determining the cardiometabolic status of patients and personalization of hypoglycemic therapy.

About the Authors

N. A. Chernikova
Russian Medical Academy of Continuous Professional Education, Moscow, Russia
Russian Federation

FSBEI FPE RMACPE MOH Russia, Docent of the Endocrinology Department, PhD, Docent



L. L. Kamynina
Russian Medical Academy of Continuous Professional Education, Moscow, Russia
Russian Federation

FSBEI FPE RMACPE MOH Russia, Endocrinology Department, Endocrinologist, PhD



A. S. Ametov
Russian Medical Academy of Continuous Professional Education, Moscow, Russia
Russian Federation

FSBEI FPE RMACPE MOH, Chief of the Endocrinology Department, Professor, DM



References

1. Hackam DG, Tan MKK, Honos GN, Leiter LA, Langer A, Goodman SG. How does the prognosis of diabetes compare with that of established vascular disease? Insights from the Canadian Vascular Protection (VP) Registry. American Heart Journal. 2004;148(6):1028–33. DOI: 10.1016/j.ahj.2004.04.034

2. Mancini GBJ, Cheng AY, Connelly K, Fitchett D, Goldenberg R, Goodman SG et al. Diabetes for Cardiologists: Practical Issues in Diagnosis and Management. Canadian Journal of Cardiology. 2017;33(3):366–77. DOI: 10.1016/j.cjca.2016.07.512

3. Mancini GBJ, Cheng AY, Connelly K, Fitchett D, Goldenberg R, Goodman S et al. CardioDiabetes: Core Competencies for Cardiovascular Clinicians in a Rapidly Evolving Era of Type 2 Diabetes Management. Canadian Journal of Cardiology. 2018;34(10):1350– 61. DOI: 10.1016/j.cjca.2018.07.010

4. Genere N, Montori VM. Review: Newer second-line drugs for diabetes are not more cost-effective than sulfonylureas. Annals of Internal Medicine. 2018;168(2):JC8. DOI: 10.7326/ACPJC-2018-168-2-008

5. Babenko A.Yu., Krasilnikova E.I., Likhonosov N.P., Likhonosova A.P., Grineva E.N. Different antihyperglycaemic drug effects on glycaemic variability in Type 2 diabetic patients. Diabetes mellitus. 2014;17(4):72–80. DOI: 10.14341/DM2014472-80

6. Bergenstal RM, Beck RW, Close KL, Grunberger G, Sacks DB, Kowalski A et al. Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care. 2018;41(11):2275–80. DOI: 10.2337/dc18-1581

7. Kovatchev B. Glycemic Variability: Risk Factors, Assessment, and Control. Journal of Diabetes Science and Technology. 2019;13(4):627–35. DOI: 10.1177/1932296819826111

8. Monnier L, Colette C, Owens DR. The application of simple metrics in the assessment of glycaemic variability. Diabetes & Metabolism. 2018;44(4):313–9. DOI: 10.1016/j.diabet.2018.02.008

9. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631–40. DOI: 10.2337/dc17-1600

10. Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care. 2019;42(8):1593–603. DOI: 10.2337/dci19-0028

11. Ametov A.S., Parnes E.Ya., Tchernikova N.A., Ermakova E.A. Cardiovascular risks in diabetes. Endocrinology: news, opinions, training. 2013;2(3):17–26.

12. Ametov A.S., Kamynina L.L., Nadzhamudinova P.K. Clinical aspects of continuous monitoring of glycemia in diabetology. Russian Medical Journal. 2013;21(28):1401–4.

13. Chernikova N.A., Kamynina L.L., Ametov A.S. The modern paradigm for assessment of the integral parameters аnd the glycemic variability - the role for the type 2 diabetes mellitus management. Medical Council. 2019;4:38–43. DOI: 10.21518/2079-701X-2019-4-38-43

14. Kim YS, Cho BL, Kim WS, Kim SH, Jung IH, Sin WY et al. Frequency and Severity of Hypoglycemia in Type 2 Diabetes Mellitus Patients Treated with a Sulfonylurea-Based Regimen at University-Affiliated Hospitals in Korea: The Naturalistic Evaluation of Hypoglycemic Events in Diabetic Subjects Study. Korean Journal of Family Medicine. 2019;40(4):212–9. DOI: 10.4082/kjfm.18.0051

15. Nganou-Gnindjio CN, Mba CM, Azabji-Kenfack M, Dehayem MY, Mfeukeu-Kuate L, Mbanya J-C et al. Poor glycemic control impacts heart rate variability in patients with type 2 diabetes mellitus: a cross sectional study. BMC Research Notes. 2018;11(1):599. DOI: 10.1186/s13104-018-3692-z

16. Pochinka I.G., Strongin L.G., Struchkova Yu.V. Variability of Glycemia and Ventricular Rhythm Disturbances in Patients with Chronic Heart Failure and Type 2 Diabetes Mellitus. Kardiologiia. 2013;53(9):47– 51.

17. Garipova A.F., Sayfutdinov R.G., Vagapova G.R. Ventricular arrhythmias associated with long QT interval as a predictor of sudden cardiac death in patients with coronary heart disease and type 2 diabetes mellitus. Kazan medical journal. 2016;97(6):854–60. DOI: 10.17750/KMJ2016-854

18. Klimontov V.V. Impact of Glycemic Variability on Cardiovascular Risk in Diabetes. Kardiologiia. 2018;58(10):80–7. DOI: 10.18087/cardio.2018.10.10152

19. Magri CJ, Mintoff D, Camilleri L, Xuereb RG, Galea J, Fava S. Relationship of Hyperglycaemia, Hypoglycaemia, and Glucose Variability to Atherosclerotic Disease in Type 2 Diabetes. Journal of Diabetes Research. 2018;2018:7464320. DOI: 10.1155/2018/7464320

20. Chen Y-Y, Fang W-H, Wang C-C, Kao T-W, Chang Y-W, Yang H-F et al. Characterization of Cardiometabolic Risks in Different Combination of Anthropometric Parameters and Percentage Body Fat. Scientific Reports. 2019;9(1):14104. DOI: 10.1038/s41598-019-50606-1

21. Younk LM, Lamos EM, Davis SN. Cardiovascular effects of anti-diabetes drugs. Expert Opinion on Drug Safety. 2016;15(9):1239–57. DOI: 10.1080/14740338.2016.1195368

22. Leonard CE, Hennessy S, Han X, Siscovick DS, Flory JH, Deo R. Proand Antiarrhythmic Actions of Sulfonylureas: Mechanistic and Clinical Evidence. Trends in Endocrinology & Metabolism. 2017;28(8):561–86. DOI: 10.1016/j.tem.2017.04.003

23. Grisanti LA. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Frontiers in Physiology. 2018;9:1669. DOI: 10.3389/fphys.2018.01669

24. Aziz Q, Li Y, Tinker A. Potassium channels in the sinoatrial node and their role in heart rate control. Channels. 2018;12(1):356–66. DOI: 10.1080/19336950.2018.1532255

25. Yang H-Q, Subbotina E, Ramasamy R, Coetzee WA. Cardiovascular KATP channels and advanced aging. Pathobiology of Aging & Age-related Diseases. 2016;6(1):32517. DOI: 10.3402/pba.v6.32517

26. Aleksandrov A.A., Yadrikhinskaya M.N., Kukharenko S.S. Atrial fibrillation: a new facet of diabetes mellitus in the XXI century. Diabetes mellitus. 2011;1:53–60.

27. Homan EA, Reyes MV, Hickey KT, Morrow JP. Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death. Frontiers in Physiology. 2019;9:1847. DOI: 10.3389/fphys.2018.01847

28. Davis IC, Ahmadizadeh I, Randell J, Younk L, Davis SN. Understanding the impact of hypoglycemia on the cardiovascular system. Expert Review of Endocrinology & Metabolism. 2017;12(1):21–33. DOI: 10.1080/17446651.2017.1275960

29. Leonard CE, Brensinger CM, Aquilante CL, Bilker WB, Boudreau DM, Deo R et al. Comparative Safety of Sulfonylureas and the Risk of Sudden Cardiac Arrest and Ventricular Arrhythmia. Diabetes Care. 2018;41(4):713–22. DOI: 10.2337/dc17-0294

30. Dedov I.I., Shestakova M.V., Vikulova O.K., Zheleznyakova A.V., Isakov M.A. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes mellitus. 2018;21(3):144–59. DOI: 10.14341/DM9686


Review

For citations:


Chernikova N.A., Kamynina L.L., Ametov A.S. The сardiometabolic assessment of the glycemic variability in patients with diabetes mellitus: the role of the glucocardiomonitoring. Kardiologiia. 2020;60(5):100–106. https://doi.org/10.18087/cardio.2020.5.n902

Views: 1075


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)