ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Evaluation of the Functional Reserve and Exercise Tolerance in Patients with CHF in Clinical Trials (Consent Document of the Editorial Board of the journal "Kardiologiia", the Board of the Society of Specialists in Heart Failure (SSHF) and Working Group “Non-drug treatment methods” of SSHF)

https://doi.org/10.18087/cardio.2024.7.n2637

Abstract

Assessing the functional capacity and exercise tolerance is an important and widely used research tool in patients with heart failure. It is used not only in cardiac rehabilitation and physical therapy, but also for inclusion criteria and outcome measures in studies of drug interventions. This document outlines the scope, guidelines for the implementation and interpretation, and limitations of the methods for assessing the functional capacity and exercise tolerance in clinical trials in patients with heart failure.

About the Authors

Yu. L. Begrambekova
Medical Research and Educational Center, Lomonosov Moscow State University
Russian Federation

Ph.D. Leading Researcher, Department of Age-Associated Diseases, Medical Research and Educational Center of Moscow State University named after M.V. Lomonosov

Moscow, Russia

 



G. P. Arutynov
Pirogov Russian National Research Medical University
Russian Federation

Head of the Department of Propaedeutics of Internal Diseases of the Pension Fund,

Moscow, Russia



M. G. Glezer
Vladimirsky Moscow Regional Research Clinical Institute; Sechenov First Moscow State Medical University
Russian Federation

MD, PhD, Professor, Chair of Cardiology, Functional Diagnostics and Ultrasound Diagnostics, Institute of Clinical Medicine

Moscow, Russia



N. A. Karanadze
Medical Research and Educational Center, Lomonosov Moscow State University
Russian Federation

Researcher, Department of Age-Associated Diseases, Medical Research and Educational Center of Moscow State University named after M.V. Lomonosov

Moscow, Russia



E. A. Kolesnikova
Pirogov Russian National Research Medical University
Russian Federation

associate Professor of the Department of propaedeutics of internal diseases of the faculty of Pediatrics

Moscow, Russia



T. A. Lelyavina
Almazov National Medical Research Center
Russian Federation

Ph.D. Leading Researcher, Almazov National Medical Research Centre

St. Petersburg, Russia



A. S. Lishuta
Sechenov First Moscow State Medical University
Russian Federation

PhD, professor at the department of Hospital therapy No. 1

Moscow, Russia



Ya. A. Orlova
Medical Research and Educational Center, Lomonosov Moscow State University
Russian Federation

Head of the Department of Age-Associated Diseases Medical Research Center of Moscow State University M.V. Lomonosova

Moscow, Russia



Yu. N. Belenkov
Sechenov First Moscow State Medical University
Russian Federation

Academician of the Russian Academy of Sciences, MD, PhD, Professor, Head of Chair of Hospital Therapy №1, Sechenov University

Moscow, Russia



References

1. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. 9th ed. P. 253-256. Dolgin M, New York Heart Association, editors - Boston, Mass.: Little, Brown and Co, 1994. – 334p. ISBN 978-0-316-60538-0

2. Goldman L, Hashimoto B, Cook EF, Loscalzo A. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation. 1981;64(6):1227–34. DOI: 10.1161/01.CIR.64.6.1227

3. Raphael C, Briscoe C, Davies J, Ian Whinnett Z, Manisty C, Sutton R et al. Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart. 2007;93(4):476–82. DOI: 10.1136/hrt.2006.089656

4. Yap J, Lim FY, Gao F, Teo LL, Lam CSP, Yeo KK. Correlation of the New York Heart Association Classification and the 6‐Minute Walk Distance: A Systematic Review. Clinical Cardiology. 2015;38(10):621–8. DOI: 10.1002/clc.22468

5. Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM. Two- , six-, and 12-minute walking tests in respiratory disease. BMJ. 1982;284(6329):1607–8. DOI: 10.1136/bmj.284.6329.1607

6. Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW et al. The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. Canadian Medical Association Journal. 1985;132(8):919–23. PMID: 3978515

7. Fuentes-Abolafio IJ, Stubbs B, Pérez-Belmonte LM, Bernal-López MR, Gómez-Huelgas R, Cuesta-Vargas AI. Physical functional performance and prognosis in patients with heart failure: a systematic review and meta-analysis. BMC Cardiovascular Disorders. 2020;20(1):512. DOI: 10.1186/s12872-020-01725-5

8. Hanson LC, McBurney H, Taylor NF. The retest reliability of the six‐minute walk test in patients referred to a cardiac rehabilitation programme. Physiotherapy Research International. 2012;17(1):55–61. DOI: 10.1002/pri.513

9. Wu G, Sanderson B, Bittner V. The 6-minute walk test: How important is the learning effect? American Heart Journal. 2003;146(1):129–33. DOI: 10.1016/S0002-8703(03)00119-4

10. Hamilton DM, Haennel RG. Validity and Reliability of the 6-Minute Walk Test in a Cardiac Rehabilitation Population. Journal of Cardiopulmonary Rehabilitation. 2000;20(3):156–64. DOI: 10.1097/00008483200005000-00003

11. Lans C, Cider Å, Nylander E, Brudin L. Test–retest reliability of six‐minute walk tests over a one‐year period in patients with chronic heart failure. Clinical Physiology and Functional Imaging. 2020;40(4):284–9. DOI: 10.1111/cpf.12637

12. Sitnikova M.Yu., Lelyavina T.A., Shlyakhto E.V., Ivanov S.G., Trukshina M.A., Fedotov P.A. et al. Effectiveness and prognostic value of diagnostic methods for the severity of chronic heart failure in patients of different ages. Arterial Hypertension. 2008;14(S1-2):5–11.

13. Tereshchenko S.N., Galyavich A.S., Uskach T.M., Ageev F.T., Arutyunov G.P., Begrambekova Yu.L. et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):311–74. DOI: 10.15829/1560-4071-2020-4083

14. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS Statement: Guidelines for the Six-Minute Walk Test. American Journal of Respiratory and Critical Care Medicine. 2002;166(1):111–7. DOI: 10.1164/ajrccm.166.1.at1102

15. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. Journal of the American College of Cardiology. 2022;79(17):e263–421. DOI: 10.1016/j.jacc.2021.12.012

16. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults: A Scientific Statement From the American Heart Association. Circulation. 2010;122(2):191–225. DOI: 10.1161/CIR.0b013e3181e52e69

17. Arutyunov G.P., Kolesnikova E.A., Begrambekova Yu.L., Orlova Ya.A., Rylova A.K., Aronov D.M. et al. Exercise training in chronic heart failure: practical guidance of the Russian Heart Failure Society. Russian Heart Failure Journal. 2017;18(1):41–66. DOI: 10.18087/rhfj.2017.1.2339

18. American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. American Journal of Respiratory and Critical Care Medicine. 2003;167(2):211–77. DOI: 10.1164/rccm.167.2.211

19. Balke B, Ware RW. An experimental study of physical fitness of Air Force personnel. United States Armed Forces Medical Journal. 1959;10(6):675–88. PMID: 13659732

20. Myers J, Bellin D. Ramp Exercise Protocols for Clinical and Cardiopulmonary Exercise Testing. Sports Medicine. 2000;30(1):23–9. DOI: 10.2165/00007256-200030010-00003

21. Agostoni P, Bianchi M, Moraschi A, Palermo P, Cattadori G, La Gioia R и др. Work-rate affects cardiopulmonary exercise test results in heart failure. European Journal of Heart Failure. 2005;7(4):498–504. DOI: 10.1016/j.ejheart.2004.06.007

22. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology. 1983;55(5):1558–64. DOI: 10.1152/jappl.1983.55.5.1558

23. Lala A, Shah KB, Lanfear DE, Thibodeau JT, Palardy M, Ambardekar AV et al. Predictive Value of Cardiopulmonary Exercise Testing Parameters in Ambulatory Advanced Heart Failure. JACC: Heart Failure. 2021;9(3):226–36. DOI: 10.1016/j.jchf.2020.11.008

24. Ingle L, Witte KK, Cleland JGJF, Clark AL. The prognostic value of cardiopulmonary exercise testing with a peak respiratory exchange ratio of <1.0 in patients with chronic heart failure. International Journal of Cardiology. 2008;127(1):88–92. DOI: 10.1016/j.ijcard.2007.04.075

25. Karanadze N.A., Begrambekova Yu.L., Borisov E.N., Orlova Ya.A. Red cell distribution width as a predictor of impaired exercise capacity in patients with heart failure. Kardiologiia. 2022;62(4):30–5. DOI: 10.18087/cardio.2022.4.n1813

26. Ozemek C, Arena R. Cardiopulmonary Exercise Testing in Patients With Heart Failure and a Preserved Ejection Fraction: Filling the Prognostic Knowledge Gap. Revista Española de Cardiología (English Edition). 2018;71(4):237–9. DOI: 10.1016/j.rec.2017.08.012

27. Zugck C, Haunstetter A, Krüger C, Kell R, Schellberg D, Kübler W и др. Impact of beta-blocker treatment on the prognostic value of currently used risk predictors in congestive heart failure. Journal of the American College of Cardiology. 2002;39(10):1615–22. DOI: 10.1016/S0735-1097(02)01840-5

28. Guimaraes GV, d’Avila VM, Silva MS, Ferreira SA, Ciolac EG, Carvalho VO et al. A cutoff point for peak oxygen consumption in the prognosis of heart failure patients with beta-blocker therapy. International Journal of Cardiology. 2010;145(1):75–7. DOI: 10.1016/j.ijcard.2009.05.001

29. O’Neill JO, Young JB, Pothier CE, Lauer MS. Peak Oxygen Consumption as a Predictor of Death in Patients With Heart Failure Receiving β-Blockers. Circulation. 2005;111(18):2313–8. DOI: 10.1161/01.CIR.0000164270.72123.18

30. Sarullo FM, Fazio G, Brusca I, Fasullo S, Paterna S, Licata P et al. Cardiopulmonary Exercise Testing in Patients with Chronic Heart Failure: Prognostic Comparison from Peak VO2 and VE/VCO2 Slope. The Open Cardiovascular Medicine Journal. 2010;4(1):127–34. DOI: 10.2174/1874192401004010127

31. Corrà U, Giordano A, Piepoli M. Cardiopulmonary exercise testing in chronic heart failure patients treated with beta-blockers: Still a valid prognostic tool. International Journal of Cardiology. 2020;317:128–32. DOI: 10.1016/j.ijcard.2020.04.020

32. Swank AM, Horton J, Fleg JL, Fonarow GC, Keteyian S, Goldberg L и др. Modest Increase in Peak VO2 Is Related to Better Clinical Outcomes in Chronic Heart Failure Patients: Results From Heart Failure and a Controlled Trial to Investigate Outcomes of Exercise Training. Circulation: Heart Failure. 2012;5(5):579–85. DOI: 10.1161/CIRCHEARTFAILURE.111.965186

33. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. Journal of the American College of Cardiology. 2011;58(3):265–74. DOI: 10.1016/j.jacc.2011.02.055

34. Weber KT, Kinasewitz GT, Janicki JS, Fishman AP. Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure. Circulation. 1982;65(6):1213–23. DOI: 10.1161/01.CIR.65.6.1213

35. Guazzi M, Borlaug B, Metra M, Losito M, Bandera F, Alfonzetti E et al. Revisiting and Implementing the Weber and Ventilatory Functional Classifications in Heart Failure by Cardiopulmonary Imaging Phenotyping. Journal of the American Heart Association. 2021;10(5):e018822. DOI: 10.1161/ JAHA.120.018822

36. Jaussaud J, Blanc P, Derval N, Bordachar P, Courregelongue M, Roudaut R et al. Ventilatory response and peak circulatory power: New functional markers of response after cardiac resynchronization therapy. Archives of Cardiovascular Diseases. 2010;103(3):184–91. DOI: 10.1016/j.acvd.2010.01.003

37. Cohen-Solal A. A non-invasively determined surrogate of cardiac power (‘circulatory power’) at peak exercise is a powerful prognostic factor in chronic heart failure. European Heart Journal. 2002;23(10):806–14. DOI: 10.1053/euhj.2001.2966

38. Giardini A, Specchia S, Berton E, Sangiorgi D, Coutsoumbas G, Gargiulo G et al. Strong and independent prognostic value of peak circulatory power in adults with congenital heart disease. American Heart Journal. 2007;154(3):441–7. DOI: 10.1016/j.ahj.2007.05.009

39. Madan N, Beachler L, Konstantinopoulos P, Worley S, Sun Z, Latson LA. Peak Circulatory Power as an Indicator of Clinical Status in Children After Fontan Procedure. Pediatric Cardiology. 2010;31(8):1203–8. DOI: 10.1007/s00246-010-9799-1

40. Methvin AB, Owens AT, Emmi AG, Allen M, Wiegers SE, Dries DL et al. Ventilatory Inefficiency Reflects Right Ventricular Dysfunction in Systolic Heart Failure. Chest. 2011;139(3):617–25. DOI: 10.1378/chest.10-0318

41. Nayor M, Xanthakis V, Tanguay M, Blodgett JB, Shah RV, Schoenike M et al. Clinical and Hemodynamic Associations and Prognostic Implications of Ventilatory Efficiency in Patients With Preserved Left Ventricular Systolic Function. Circulation: Heart Failure. 2020;13(5):e006729. DOI: 10.1161/CIRCHEARTFAILURE.119.006729

42. Lewis GD, Shah RV, Pappagianopolas PP, Systrom DM, Semigran MJ. Determinants of Ventilatory Efficiency in Heart Failure: The Role of Right Ventricular Performance and Pulmonary Vascular Tone. Circulation: Heart Failure. 2008;1(4):227–33. DOI: 10.1161/CIRCHEARTFAILURE.108.785501

43. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Failure Reviews. 2013;18(1):79–94. DOI: 10.1007/s10741-012-9332-0

44. Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P et al. Development of a Ventilatory Classification System in Patients With Heart Failure. Circulation. 2007;115(18):2410–7. DOI: 10.1161/CIRCULATIONAHA.107.686576

45. Hollenberg M, Tager IB. Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. Journal of the American College of Cardiology. 2000;36(1):194–201. DOI: 10.1016/S0735-1097(00)00691-4

46. Forman DE, Guazzi M, Myers J, Chase P, Bensimhon D, Cahalin LP et al. Ventilatory Power: A Novel Index That Enhances Prognostic Assessment of Patients With Heart Failure. Circulation: Heart Failure. 2012;5(5):621–6. DOI: 10.1161/CIRCHEARTFAILURE.112.968529

47. Castello-Simões V, Minatel V, Karsten M, Simões RP, Perseguini NM, Milan JC et al. Circulatory and Ventilatory Power: Characterization in Patients with Coronary Artery Disease. Arquivos Brasileiros de Cardiologia. 2015;104(6):476–85. DOI: 10.5935/abc.20150035

48. Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M et al. Exercise Anaerobic Threshold and Ventilatory Efficiency Identify Heart Failure Patients for High Risk of Early Death. Circulation. 2002;106(24):3079–84. DOI: 10.1161/01.CIR.0000041428.99427.06

49. Corrà U, Giordano A, Mezzani A, Gnemmi M, Pistono M, Caruso R et al. Cardiopulmonary exercise testing and prognosis in heart failure due to systolic left ventricular dysfunction: a validation study of the European Society of Cardiology Guidelines and Recommendations (2008) and further developments. European Journal of Preventive Cardiology. 2012;19(1):32–40. DOI: 10.1177/1741826710393994

50. Agostoni P, Corrà U, Cattadori G, Veglia F, Battaia E, La Gioia R et al. Prognostic Value of Indeterminable Anaerobic Threshold in Heart Failure. Circulation: Heart Failure. 2013;6(5):977–87. DOI: 10.1161/CIRCHEARTFAILURE.113.000471

51. Corrà U, Pistono M, Mezzani A, Braghiroli A, Giordano A, Lanfranchi P и др. Sleep and Exertional Periodic Breathing in Chronic Heart Failure: Prognostic Importance and Interdependence. Circulation. 2006;113(1):44–50. DOI: 10.1161/CIRCULATIONAHA.105.543173

52. Guazzi M, Arena R, Ascione A, Piepoli M, Guazzi MD. Exercise oscillatory breathing and increased ventilation to carbon dioxide production slope in heart failure: An unfavorable combination with high prognostic value. American Heart Journal. 2007;153(5):859–67. DOI: 10.1016/j.ahj.2007.02.034

53. Laoutaris ID, Piotrowicz E, Kallistratos MS, Dritsas A, Dimaki N, Miliopoulos D et al. Combined aerobic/resistance/inspiratory muscle training as the ‘optimum’ exercise programme for patients with chronic heart failure: ARISTOS-HF randomized clinical trial. European Journal of Preventive Cardiology. 2021;28(15):1626–35. DOI: 10.1093/eurjpc/zwaa091

54. Barron A, Dhutia N, Mayet J, Hughes AD, Francis DP, Wensel R. Test–retest repeatability of cardiopulmonary exercise test variables in patients with cardiac or respiratory disease. European Journal of Preventive Cardiology. 2014;21(4):445–53. DOI: 10.1177/2047487313518474

55. Begrambekova Yu.L., Fedotov D.A., Karanadze N.A., Lelyavina T.A., Bortsova M.A., Orlova Ya.A. Possibilities of Predicting Peak Oxygen Consumption in Patients With Chronic Heart Failure According to the 6-Minute Walk Test. Kardiologiia. 2024;64(2):34–42. DOI: 10.18087/cardio.2024.2.n2551

56. Burr JF, Bredin SSD, Faktor MD, Warburton DER. The 6-Minute Walk Test as a Predictor of Objectively Measured Aerobic Fitness in Healthy WorkingAged Adults. The Physician and Sportsmedicine. 2011;39(2):133–9. DOI: 10.3810/psm.2011.05.1904

57. Ross RM, Murthy JN, Wollak ID, Jackson AS. The six minute walk test accurately estimates mean peak oxygen uptake. BMC Pulmonary Medicine. 2010;10(1):31. DOI: 10.1186/1471-2466-10-31

58. Adedoyin RA, Adeyanju SA, Balogun MO, Adebayo RA, Akintomide AO, Akinwusi PO. Prediction of functional capacity during six-minute walk among patients with chronic heart failure. Nigerian Journal of Clinical Practice. 2010;13(4):379–81. PMID: 21220849

59. Cahalin LP, Mathier MA, Semigran MJ, Dec GW, DiSalvo TG. The SixMinute Walk Test Predicts Peak Oxygen Uptake and Survival in Patients With Advanced Heart Failure. Chest. 1996;110(2):325–32. DOI: 10.1378/chest.110.2.325

60. ACSM’s guidelines for exercise testing and prescription. Pescatello LS, American College of Sports Medicine, editor - Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2014. – 456p. ISBN 978-1-60913-605-5

61. Zhang Y, Zhang J, Ni W, Yuan X, Zhang H, Li P et al. Sarcopenia in heart failure: a systematic review and meta‐analysis. ESC Heart Failure. 2021;8(2):1007–17. DOI: 10.1002/ehf2.13255

62. Emami A, Saitoh M, Valentova M, Sandek A, Evertz R, Ebner N et al. Comparison of sarcopenia and cachexia in men with chronic heart failure: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). European Journal of Heart Failure. 2018;20(11):1580–7. DOI: 10.1002/ejhf.1304

63. Joseph GA, Wang SX, Jacobs CE, Zhou W, Kimble GC, Tse HW et al. Partial Inhibition of mTORC1 in Aged Rats Counteracts the Decline in Muscle Mass and Reverses Molecular Signaling Associated with Sarcopenia. Molecular and Cellular Biology. 2019;39(19):e00141-19. DOI: 10.1128/MCB.00141-19

64. Bossone E, Arcopinto M, Iacoviello M, Triggiani V, Cacciatore F, Maiello C et al. Multiple hormonal and metabolic deficiency syndrome in chronic heart failure: rationale, design, and demographic characteristics of the T.O.S.CA. Registry. Internal and Emergency Medicine. 2018;13(5):661–71. DOI: 10.1007/s11739-018-1844-8

65. Alam M, Smirk FH. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. The Journal of Physiology.

66. 1937;89(4):372–83. DOI: 10.1113/jphysiol.1937.sp003485

67. Nobrega ACL, O’Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents. BioMed Research International. 2014;2014:1–20. DOI: 10.1155/2014/478965

68. Crisafulli A, Marongiu E, Ogoh S. Cardiovascular Reflexes Activity and Their Interaction during Exercise. BioMed Research International. 2015;2015:1–10. DOI: 10.1155/2015/394183

69. Scott AC, Wensel R, Davos CH, Kemp M, Kaczmarek A, Hooper J et al. Chemical Mediators of the Muscle Ergoreflex in Chronic Heart Failure: A Putative Role for Prostaglandins in Reflex Ventilatory Control. Circulation. 2002;106(2):214–20. DOI: 10.1161/01.CIR.0000021603.36744.5E

70. Grgic J, Lazinica B, Schoenfeld BJ, Pedisic Z. Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: a Systematic Review. Sports Medicine - Open. 2020;6(1):31. DOI: 10.1186/s40798-020-00260-z

71. Pavasini R, Serenelli M, Celis-Morales CA, Gray SR, Izawa KP, Watanabe S et al. Grip strength predicts cardiac adverse events in patients with cardiac disorders: an individual patient pooled meta-analysis. Heart. 2019;105(11):834–41. DOI: 10.1136/heartjnl-2018-313816

72. Li R-M, Dai G-H, Guan H, Gao W-L, Ren L-L, Wang X-M et al. Association between handgrip strength and heart failure in adults aged 45 years and older from NHANES 2011–2014. Scientific Reports. 2023;13(1):4551. DOI: 10.1038/s41598-023-31578-9

73. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG et al. A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. Journal of Gerontology. 1994;49(2):M85–94. DOI: 10.1093/geronj/49.2.M85

74. Kitai T, Shimogai T, Tang WHW, Iwata K, Xanthopoulos A, Otsuka S и др. Short physical performance battery vs. 6-minute walking test in hospitalized elderly patients with heart failure. European Heart Journal Open. 2021;1(1):oeab006. DOI: 10.1093/ehjopen/oeab006

75. Begrambekova Yu.L., Karanadze N.A., Orlova Ya.A. Alterations of the respiratory system in heart failure. Kardiologiia. 2019;59(2S):15–24. DOI: 10.18087/cardio.2626

76. Hamazaki N, Kamiya K, Matsuzawa R, Nozaki K, Ichikawa T, Tanaka S et al. Prevalence and prognosis of respiratory muscle weakness in heart failure patients with preserved ejection fraction. Respiratory Medicine. 2020;161:105834. DOI: 10.1016/j.rmed.2019.105834

77. Frankenstein L, Nelles M, Meyer FJ, Sigg C, Schellberg D, Remppis BA et al. Validity, prognostic value and optimal cutoff of respiratory muscle strength in patients with chronic heart failure changes with beta-blocker treatment. European Journal of Cardiovascular Prevention and Rehabilitation. 2009;16(4):424–9. DOI: 10.1097/HJR.0b013e3283030a7e

78. Arutyunov A.G., Ilyina K.V., Arutyunov G.P., Kolesnikova E.A., Pchelin V.V., Kulagina N.P. et al. Morphofunctional Features of The Diaphragm in Patients With Chronic Heart Failure. Kardiologiia. 2019;59(1):12–21. DOI: 10.18087/cardio.2019.1.2625

79. Sokolova A.V., Dragunov D.O., Arutyunov G.P. The prevalence of sarcopenia in patients with chronic heart failure and chronic kidney disease. Clinical Nephrology. 2023;3:18–23. DOI: 10.18565/nephrology.2023.3.18-23

80. Yamada K, Kinugasa Y, Sota T, Miyagi M, Sugihara S, Kato M et al. Inspiratory Muscle Weakness Is Associated With Exercise Intolerance in Patients With Heart Failure With Preserved Ejection Fraction: A Preliminary Study. Journal of Cardiac Failure. 2016;22(1):38–47. DOI: 10.1016/j.cardfail.2015.10.010

81. Thomsen RW, Kasatpibal N, Riis A, Nørgaard M, Sørensen HT. The Impact of Pre-existing Heart Failure on Pneumonia Prognosis: Population-based Cohort Study. Journal of General Internal Medicine. 2008;23(9):1407–13. DOI: 10.1007/s11606-008-0672-3

82. Balmain BN, Tomlinson AR, MacNamara JP, Sarma S, Levine BD, Hynan LS et al. Physiological dead space during exercise in patients with heart failure with preserved ejection fraction. Journal of Applied Physiology. 2022;132(3):632–40. DOI: 10.1152/japplphysiol.00786.2021

83. Killian KJ, Jones NL. Respiratory muscles and dyspnea. Clinics in Chest Medicine. 1988;9(2):237–48. PMID: 3292125

84. Laveneziana P, Albuquerque A, Aliverti A, Babb T, Barreiro E, Dres M et al. ERS statement on respiratory muscle testing at rest and during exercise. European Respiratory Journal. 2019;53(6):1801214. DOI: 10.1183/13993003.01214-2018

85. Lee Y, Son S, Kim D-K, Park MW. Association of Diaphragm Thickness and Respiratory Muscle Strength With Indices of Sarcopenia. Annals of Rehabilitation Medicine. 2023;47(4):307–14. DOI: 10.5535/arm.23081

86. Mcelvaney G, Blackie S, Morrison NJ, Wilcox PG, Fairbarn MS, Pardy RI. Maximal Static Respiratory Pressures in the Normal Elderly. American Review of Respiratory Disease. 1989;139(1):277–81. DOI: 10.1164/ajrccm/139.1.277

87. Polkey MI, Moxham J. Clinical Aspects of Respiratory Muscle Dysfunction in the Critically Ill. CHEST. 2001;119(3):926–39. DOI: 10.1378/chest.119.3.926

88. Caruso P, Albuquerque ALPD, Santana PV, Cardenas LZ, Ferreira JG, Prina E et al. Diagnostic methods to assess inspiratory and expiratory muscle strength. Jornal Brasileiro de Pneumologia. 2015;41(2):110–23. DOI: 10.1590/S1806-37132015000004474

89. Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. The American Review of Respiratory Disease. 1969;99(5):696–702. DOI: 10.1164/arrd.1969.99.5.696

90. Wilson SH, Cooke NT, Edwards RH, Spiro SG. Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax. 1984;39(7):535–8. DOI: 10.1136/thx.39.7.535

91. Enright PL, Kronmal RA, Manolio TA, Schenker MB, Hyatt RE. Respiratory muscle strength in the elderly. Correlates and reference values. Cardiovascular Health Study Research Group. American Journal of Respiratory and Critical Care Medicine. 1994;149(2):430–8. DOI: 10.1164/ajrccm.149.2.8306041

92. Hautmann H, Hefele S, Schotten K, Huber RM. Maximal inspiratory mouth pressures (PIMAX) in healthy subjects – what is the lower limit of normal? Respiratory Medicine. 2000;94(7):689–93. DOI: 10.1053/rmed.2000.0802

93. Sachs MC, Enright PL, Hinckley Stukovsky KD, Jiang R, Barr RG, MultiEthnic Study of Atherosclerosis Lung Study. Performance of maximum inspiratory pressure tests and maximum inspiratory pressure reference equations for 4 race/ethnic groups. Respiratory Care. 2009;54(10):1321–8. PMID: 19796411

94. Sanchez FF, Araújo Da Silva CD, De Souza Pereira Gama Maciel MC, Rebouças Demósthenes Marques J, Brosina De Leon E, Lins Gonçalves R. Predictive equations for respiratory muscle strength by anthropometric variables. The Clinical Respiratory Journal. 2018;12(7):2292–9. DOI: 10.1111/crj.12908

95. Moeliono M, Marta Sari D, Nashrulloh T. Prediction for the maximum inspiratory pressure value from the thoracic expansion measurement in Indonesian healthy young adults. Canadian Journal of Respiratory Therapy. 2022;58:34–8. DOI: 10.29390/cjrt-2021-064

96. Lelyavina T.A., Sitnikova M.Yu., Galenko V.L., Bortsova M.A. Non-invasive method for detecting changes in the lactic acid content in the blood of patients with chronic heart failure using the treadmill test protocol with continuously increasing physical activity. Patent for the invention RU 2789272 C1 from 31.01.2023. Application No.2022102976A from 07.02.2022. Av. at: https://patents.google.com/patent/RU2789272C1/ru.

97. Lelyavina T.A., Sitnikova M.Yu. Method for determining the biological reserves of the body’s adaptation to physical activity. Patent for the invention RU 2574901 C1 from 10.02.2016. Application No. 2014139641/15 from 30.09.2014. Av. at: https://patenton.ru/patent/RU2574901C1?ysclid=lyjr58qcrc422915792.


Review

For citations:


Begrambekova Yu.L., Arutynov G.P., Glezer M.G., Karanadze N.A., Kolesnikova E.A., Lelyavina T.A., Lishuta A.S., Orlova Ya.A., Belenkov Yu.N. Evaluation of the Functional Reserve and Exercise Tolerance in Patients with CHF in Clinical Trials (Consent Document of the Editorial Board of the journal "Kardiologiia", the Board of the Society of Specialists in Heart Failure (SSHF) and Working Group “Non-drug treatment methods” of SSHF). Kardiologiia. 2024;64(7):4-26. https://doi.org/10.18087/cardio.2024.7.n2637

Views: 774


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)