ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Soluble guanylate cyclase: restoration of the NO–sGC–cGMP signaling pathway activity. A new opportunity in the treatment of heart failure

https://doi.org/10.18087/cardio.2023.5.n2422

Abstract

Studying the key mechanisms of cardiovascular diseases has opened new possibilities for the pharmacological impact on the pathophysiological mechanisms of heart failure (HF). The signaling pathway, nitric oxide – soluble guanylate cyclase – cyclic guanosine monophosphate (NJ-sGC-cGMP), provides normal functioning of the cardiovascular system in healthy people and serves as a potential target for medicines in HF with reduced ejection fraction (HFrEF). In HFrEF progression, the sGC activity decreases due to endothelial dysfunction and oxidative stress. The increased synthesis of cGMP resulting from sGC stimulation can restrict myocardial fibrosis, reduce stiffness of the vascular wall and induce vasodilation; in this process, the mechanism of action of sGC stimulators does not overlap with other therapeutic targets. According to the results of the international randomized clinical study VICTORIA, the use of the sGC stimulator, vericiguat, in patients with HF, ejection fraction <45%, and a recent episode of decompensation in their history reduced the risk of repeated hospitalization and cardiovascular death. Also, this treatment was characterized by a favorable safety profile when added to standard therapy.

About the Authors

Yu. N. Belenkov
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Academician of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Director of the Ostroumov Hospital Therapy Clinic



M. V. Kozhevnikova
Sklifosovsky Institute of Clinical Medicine, Moscow

PhD Professor of the Department of Hospital Therapy No. 1 of the Institute of Clinical Medicine. N.V. Sklifosovsky



References

1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP et al. Heart Disease and Stroke Statistics–2020 Update: A Report From the American Heart Association. Circulation. 2020;141(9):e139–596. DOI: 10.1161/CIR.0000000000000757

2. Arutyunov A.G., Dragunov D.O., Arutyunov G.P., Rylova A.K., Pashkevich D.D., Viter K.V. et al. First open study of syndrome of acute decompensation of heart failure and concomitant diseases in Russian Federation: independent registry ORAKUL. Kardiologiia. 2015;55(5):12–21.

3. Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. European Heart Journal. 2022;43(38):3618–731. DOI: 10.1093/eurheartj/ehac237

4. Ministry of Health of the Russian Federation. Clinical guidelines Pulmonary hypertension, including chronic thromboembolic pulmonary hypertension. Av. at: https://cr.minzdrav.gov.ru/schema/159_1.

5. Friebe A, Sandner P, Schmidtko A. cGMP: a unique 2nd messenger molecule – recent developments in cGMP research and development. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2020;393(2):287–302. DOI: 10.1007/s00210-019-01779-z

6. Kolwicz SC, Purohit S, Tian R. Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes. Circulation Research. 2013;113(5):603–16. DOI: 10.1161/CIRCRESAHA.113.302095

7. Grześk G, Nowaczyk A. Current Modulation of Guanylate Cyclase Pathway Activity—Mechanism and Clinical Implications. Molecules. 2021;26(11):3418. DOI: 10.3390/molecules26113418

8. Dove S. Mammalian Nucleotidyl Cyclases and Their Nucleotide Binding Sites. Handbook of Experimental Pharmacology. 2015;238:49–66. DOI: 10.1007/164_2015_34

9. Potter LR. Guanylyl cyclase structure, function and regulation. Cellular Signalling. 2011;23(12):1921–6. DOI: 10.1016/j.cellsig.2011.09.001

10. Lee DI, Kass DA. Phosphodiesterases and Cyclic GMP Regulation in Heart Muscle. Physiology. 2012;27(4):248–58. DOI: 10.1152/physiol.00011.2012

11. Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D. Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. Journal of Clinical Investigation. 2006;116(6):1731–7. DOI: 10.1172/JCI27657

12. Costell MH, Ancellin N, Bernard RE, Zhao S, Upson JJ, Morgan LA et al. Comparison of Soluble Guanylate Cyclase Stimulators and Activators in Models of Cardiovascular Disease Associated with Oxidative Stress. Frontiers in Pharmacology. 2012;3:128. DOI: 10.3389/fphar.2012.00128

13. Sandner P, Vakalopoulos A, Hahn MG, Stasch J-P, Follmann M. Soluble guanylate cyclase stimulators and their potential use: a patent review. Expert Opinion on Therapeutic Patents. 2021;31(3):203–22. DOI: 10.1080/13543776.2021.1866538

14. Kireeva V.V., Koch N.V., Lifschitz G.I., Apartsin K.A. Endothelial dysfunction as cornerstone of cardiovascular events: molecular and pharmaceutic aspects. Russian Journal of Cardiology. 2015;19(10):64–8. DOI: 10.15829/1560-4071-2014-10-64-68

15. Safonova J.I., Kozhevnikova M.V., Danilogorskaya Yu.A., Zheleznykh E.A., Zektser V.Yu., Shchendrygina A.A. et al. Positive Effects of Perindopril on Microvascular Vessels in Patients With Chronic Heart Failure. Kardiologiia. 2020;60(8):65–70. DOI: 10.18087/cardio.2020.8.n1216

16. Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacology & Therapeutics. 2009;122(3):216–38. DOI: 10.1016/j.pharmthera.2009.02.009

17. Barman SA. Effect of Nitric Oxide on Mitogen-Activated Protein Kinases in Neonatal Pulmonary Vascular Smooth Muscle. Lung. 2005;183(5):325–35. DOI: 10.1007/s00408-005-2545-4

18. Zhou W, Dasgupta C, Negash S, Raj JU. Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMPdependent protein kinase. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2007;292(6):L1459–66. DOI: 10.1152/ajplung.00143.2006

19. Rizzo NO, Maloney E, Pham M, Luttrell I, Wessells H, Tateya S et al. Reduced NO-cGMP Signaling Contributes to Vascular Inflammation and Insulin Resistance Induced by High-Fat Feeding. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(4):758–65. DOI: 10.1161/ATVBAHA.109.199893

20. Shieh JTC, Srivastava D. Heart Malformation: What Are the Chances It Could Happen Again? Circulation. 2009;120(4):269–71. DOI: 10.1161/CIRCULATIONAHA.109.878637

21. Follmann M, Ackerstaff J, Redlich G, Wunder F, Lang D, Kern A et al. Discovery of the Soluble Guanylate Cyclase Stimulator Vericiguat (BAY 1021189) for the Treatment of Chronic Heart Failure. Journal of Medicinal Chemistry. 2017;60(12):5146–61. DOI: 10.1021/acs.jmedchem.7b00449

22. Sandner P. From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biological Chemistry. 2018;399(7):679–90. DOI: 10.1515/hsz-2018-0155

23. Schmidt HW, Schmidt PM, Stasch J-P. NO- and Haem-Independent Soluble Guanylate Cyclase Activators. Handbook of Experimental Pharmacology. 2009;191:309–39. DOI: 10.1007/978-3-540-68964-5_14

24. Breitenstein S, Roessig L, Sandner P, Lewis KS. Novel sGC Stimulators and sGC Activators for the Treatment of Heart Failure. Handbook of Experimental Pharmacology. 2017;243:225–47. DOI: 10.1007/164_2016_100

25. Bykov V.V., Vengerovsky A.I., Udut V.V. Soluble guanylate cyclase as a drug target. Experimental and Clinical Pharmacology. 2022;85(7):45–9. DOI: 10.30906/0869-2092-2022-85-7-45-49

26. Dumitrascu R, Weissmann N, Ghofrani HA, Dony E, Beuerlein K, Schmidt H et al. Activation of Soluble Guanylate Cyclase Revers es Experimental Pulmonary Hypertension and Vascular Remodeling. Circulation. 2006;113(2):286–95. DOI: 10.1161/CIRCULATIONAHA.105.581405

27. Shmal’ts A.A., Gorbachevskiy S.V. Riociguat and sildenafil for pulmonary hypertension: similarity and difference. Russian Pulmonology. 2016;26(1):85–91. DOI: 10.18093/0869-0189-2016-26-1-85-91

28. Valieva Z.S., Taran I.N., Martynyuk T.V., Chazova I.E. Modern view on the place of riociguat in the treatment of pulmonary hypertension. Therapeutic Archive. 2018;90(4):55–9. DOI: 10.26442/terarkh201890455-59

29. State Register of Medicines. Instructions for medical use of drug. Adempas. LP-№(00764)-(RG-RU). Av. at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=25990db0-6a4c-43b4-a0cb-277fc2ff0d9c.

30. Chazova I.E., Arkhipova O.A., Martynyuk T.V. Pulmonary arterial hypertension in Russia: six-year observation analysis of the National Registry. Therapeutic Archive. 2019;91(1):25–31. DOI: 10.26442/00403660.2019.01.000024

31. Hoeper MM, Simonneau G, Corris PA, Ghofrani H-A, Klinger JR, Langleben D et al. RESPITE: switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors. European Respiratory Journal. 2017;50(3):1602425. DOI: 10.1183/13993003.02425-2016

32. Ghio S, Bonderman D, Felix SB, Ghofrani HA, Michelakis ED, Mitrovic V et al. Left ventricular systolic dysfunction associated with pulmonary hypertension riociguat trial (LEPHT): rationale and design. European Journal of Heart Failure. 2012;14(8):946–53. DOI: 10.1093/eurjhf/hfs071

33. Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C et al. Acute Hemodynamic Effects of Riociguat in Patients With Pulmonary Hypertension Associated With Diastolic Heart Failure (DILATE-1). Chest. 2014;146(5):1274–85. DOI: 10.1378/chest.14-0106

34. Sandner P, Stasch JP. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respiratory Medicine. 2017;122(Suppl 1):S1–9. DOI: 10.1016/j.rmed.2016.08.022

35. Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch J-P. Soluble Guanylate Cyclase Stimulators and Activators. Handbook of Experimental Pharmacology. 2018;264:355–94. DOI: 10.1007/164_2018_197

36. Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CSP, Maggioni AP et al. Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction: The SOCRATES-REDUCED Randomized Trial. JAMA. 2015;314(21):2251–62. DOI: 10.1001/jama.2015.15734

37. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine. 2020;382(20):1883–93. DOI: 10.1056/NEJMoa1915928

38. Lam CSP, Mulder H, Lopatin Y, Vazquez‐Tanus JB, Siu D, Ezekowitz J et al. Blood Pressure and Safety Events With Vericiguat in the VICTORIA Trial. Journal of the American Heart Association. 2021;10(22):e021094. DOI: 10.1161/JAHA.121.021094

39. Voors AA, Mulder H, Reyes E, Cowie MR, Lassus J, Hernandez AF et al. Renal function and the effects of vericiguat in patients with worsening heart failure with reduced ejection fraction: insights from the VICTORIA (Vericiguat Global Study in Subjects with HFrEF) trial. European Journal of Heart Failure. 2021;23(8):1313–21. DOI: 10.1002/ejhf.2221


Review

For citations:


Belenkov Yu.N., Kozhevnikova M.V. Soluble guanylate cyclase: restoration of the NO–sGC–cGMP signaling pathway activity. A new opportunity in the treatment of heart failure. Kardiologiia. 2023;63(5):68-76. (In Russ.) https://doi.org/10.18087/cardio.2023.5.n2422

Views: 1633


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)