The Algorithm for Using Transit-time Flow Measurement and High-resolution Epicardial Ultrasound for Intraoperative Grafts Assessment during Coronary Artery Bypass Surgery
https://doi.org/10.18087/cardio.2022.8.n1823
Abstract
Aim To develop an algorithm for using ultrasonic flowmetry (USF) and epicardial ultrasonic scanning (EpiUSS) for intraoperative assessment of anatomic and functional viability of conduits.
Material and methods For viability assessment of 460 coronary grafts in 150 patients who were operated at the Bakulev National Medical Research Center for Cardiovascular Surgery (2018–2021 г.), markers of graft failure were analyzed using the USF and EpiUSS data confirmed by results of graft angiography. According to RОС analysis, the Qmean and PI values indicative of the graft failure were determined. A CHAID decision tree was developed for assessing the prognostic significance of the analyzed parameters. Based on this prognostic model, an algorithm was developed for intraoperative diagnosis of anatomic and functional graft viability during coronary bypass surgery.
Results The Qmean ≤20.5 ml/min values were associated with an increased relative risk (RR) of detecting graft failure (RR, 8.2; 95 % confidence interval, CI, 4.4–15.2). The developed model shows a high accuracy of predicting the graft failure (AUC = 0.906±0.03). The RR of graft failure at PI ≥2.65 was 3.3 (95 % CI, 2.17–5.08). The prognostic model for PI (AUC = 0.745±0.042) was sufficiently accurate with respect of possible graft failure. Nodes of high and low risk for graft failure were determined in the developed decision tree. The obtained model was characterized by high sensitivity and specificity (100 and 84.3 %, respectively).
Conclusion The combined use of USF and EpiUSS allows a highly accurate assessment of both morphological and functional characteristics of graft flow. The developed algorithm for the intraoperative diagnosis of anatomic and functional graft viability can be recommended for clinical use.
About the Authors
I. Yu. SigaevRussian Federation
Doctor of Medicine, Professor, Head of the Department of Surgery for Combined Diseases of Coronary and peripheral artery
M. A. Keren
Russian Federation
Doctor of Medicine, Professor of the Department of Cardiology and Functional Diagnostics with a Course of Pediatric Cardiology at the Institute of Professional Education of High Professional Education, Senior Researcher of the Department of Surgery for Combined Diseases of Coronary and Peripheral Artery
I. V. Slivneva
Russian Federation
PhD, Associate Professor of the Department of Cardiology and Functional Diagnostics with a Course of Pediatric Cardiology, Ultrasound Diagnostic Specialist, Researcher of the Emergency Ultrasound and Functional Diagnostics Group
Z. D. Shonia
Russian Federation
postgraduate student of the Department of Surgery for Combined Diseases of Coronary and Peripheral Artery
D. I. Marapov
Russian Federation
PhD, Associate Professor, Department of Public Health, Economics and Health Care Management
References
1. Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Russian Journal of Cardiology. 2019;24(8):151– 226. [Russian: Neumann F-J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedettol U. и др. Рекомендации ESC/EACTS по реваскуляризации миокарда 2018. Рабочая группа по реваскуляризации миокарда Европейского Общества Кардиологов (ESC) и Европейской Ассоциации Кардио-торакальных Хирургов (EACTS). Разработаны с участием Европейской Ассоциации по Чрескожным Сердечно-сосудистым Вмешательствам (EAPCI). Российский кардиологический журнал. 2019;24(8):151-226]. DOI: 10.15829/1560-4071-2019-8-151-226
2. Balacumaraswami L, Taggart DP. Intraoperative Imaging Techniques to Assess Coronary Artery Bypass Graft Patency. The Annals of Thoracic Surgery. 2007;83(6):2251–7. DOI: 10.1016/j.athoracsur.2006.12.025
3. Fabricius A. Early angiographic control of perioperative ischemia after coronary artery bypass grafting. European Journal of Cardio-Thoracic Surgery. 2001;19(6):853–8. DOI: 10.1016/S1010-7940(01)00692-3
4. D’Ancona G, Karamanoukian HL, Salerno TA, Ricci M, Bergsland J. Flow measurement in coronary artery surgery. The Annals of Thoracic Surgery. 2000;69(4):1300–1. DOI: 10.1016/S0003-4975(99)01547-7
5. Kieser TM, Rose S, Kowalewski R, Belenkie I. Transit-time flow predicts outcomes in coronary artery bypass graft patients: a series of 1000 consecutive arterial grafts. European Journal of Cardio-Thoracic Surgery. 2010;38(2):155–62. DOI: 10.1016/j.ejcts.2010.01.026
6. Niclauss L. Techniques and standards in intraoperative graft verification by transit time flow measurement after coronary artery bypass graft surgery: a critical review. European Journal of Cardio-Thoracic Surgery. 2017;51(1):26–33. DOI: 10.1093/ejcts/ezw203
7. Sigaev I.Yu., Keren M.A., Shoniya Z.D. The possibilities of ultrasound flowmetry in combination with epicardial ultrasound scanning for a comprehensive assessment of the functional state of the conduits during coronary bypass surgery. Russian Journal of Thoracic and Cardiovascular Surgery. 2021;63(2):133–9. [Russian: Сигаев И.Ю., Керен М.А., Шония З.Д. Возможности ультразвуковой флоуметрии в сочетании с эпикардиальным ультразвуковым сканированием для комплексной оценки функционального состояния кондуитов при операциях коронарного шунтирования. Грудная и сердечно-сосудистая хирургия. 2021;63(2):133-9]. DOI: 10.24022/0236-2791-2021-63-2-133-139
8. Di Giammarco G, Marinelli D. Intraoperative graft assessment and imaging of native coronary arteries. Indian Journal of Thoracic and Cardiovascular Surgery. 2018;34(Suppl 3):297–301. DOI: 10.1007/s12055-018-0697-0
9. Thuijs DJFM, Bekker MWA, Taggart DP, Kappetein AP, Kieser TM, Wendt D et al. Improving coronary artery bypass grafting: a systematic review and meta-analysis on the impact of adopting transit-time flow measurement. European Journal of Cardio-Thoracic Surgery. 2019;56(4):654–63. DOI: 10.1093/ejcts/ezz075
10. Hiraoka A, Fukushima S, Miyagawa S, Yoshikawa Y, Saito S, Domae K et al. Quantity and quality of graft flow in coronary artery bypass grafting is associated with cardiac computed tomography study-based anatomical and functional parameters. European Journal of Cardio-Thoracic Surgery. 2017;52(5):909–16. DOI: 10.1093/ejcts/ezx210
11. Ohmes LB, Di Franco A, Giammarco GD, Rosati CM, Lau C, Girardi LN et al. Techniques for intraoperative graft assessment in coronary artery bypass surgery. Journal of Thoracic Disease. 2017;9(Suppl 4):S327–32. DOI: 10.21037/jtd.2017.03.77
12. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T et al. Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal. 2010;31(20):2501–55. DOI: 10.1093/eurheartj/ehq277
13. Lehnert P, Møller CH, Damgaard S, Gerds TA, Steinbrüchel DA. Transit-Time Flow Measurement as a Predictor of Coronary Bypass Graft Failure at One Year Angiographic Follow-Up. Journal of Cardiac Surgery. 2015;30(1):47–52. DOI: 10.1111/jocs.12471
14. Handa T, Orihashi K, Nishimori H, Fukutomi T, Yamamoto M, Kondo N et al. Maximal blood flow acceleration analysis in the early diastolic phase for in situ internal thoracic artery bypass grafts: a new transit-time flow measurement predictor of graft failure following coronary artery bypass grafting. Interactive CardioVascular and Thoracic Surgery. 2015;20(4):449–57. DOI: 10.1093/icvts/ivu448
15. Walker PF, Daniel WT, Moss E, Thourani VH, Kilgo P, Liberman HA et al. The Accuracy of Transit Time Flow Measurement in Predicting Graft Patency after Coronary Artery Bypass Grafting. Innovations. 2013;8(6):416–9. DOI: 10.1097/imi.0000000000000021
16. D’Ancona G, Karamanoukian HL, Salerno TA, Schmid S, Bergsland J. Flow measurement in coronary surgery. The Heart Surgery Forum. 1999;2(2):121–4. PMID: 11276468
17. Uehara M, Muraki S, Takagi N, Yanase Y, Tabuchi M, Tachibana K et al. Evaluation of gastroepiploic arterial grafts to right coronary artery using transit-time flow measurement. European Journal of Cardio-Thoracic Surgery. 2015;47(3):459–63. DOI: 10.1093/ejcts/ezu229
18. Bazylev V.V., Nemchenko E.V., Rosseikin E.V., Mikulyak A.I. Flowmetric and angiographic predictors of coronary bypass occlusion. Angiology and vascular surgery. 2018;24(2):49–55. [Russian: Базылев В.В., Немченко Е.В., Россейкин Е.В., Микуляк А.И. Флоуметрические и ангиографические предикторы окклюзии коронарных шунтов. Ангиология и сосудистая хирургия. 2018;24(2):49-55]
19. Ravulapalli H, Karthekeyan R, Vakumudi M, Srigiri R, Saldanha R, Sulaiman S. Intraoperative anastomotic site detection and assessment of LIMA-to-LAD anastomosis by epicardial ultrasound in offpump coronary artery bypass grafting - A prospective single-blinded study. Annals of Cardiac Anaesthesia. 2010;13(3):231–5. DOI: 10.4103/0971-9784.69069
20. Budde RPJ, Bakker PFA, Gründeman PF, Borst C. High-frequency epicardial ultrasound: review of a multipurpose intraoperative tool for coronary surgery. Surgical Endoscopy. 2009;23(3):467–76. DOI: 10.1007/s00464-008-0082-y
21. Hiratzka LF, McPherson DD, Lamberth WC, Brandt B, Armstrong ML, Schröder E et al. Intraoperative evaluation of coronary artery bypass graft anastomoses with high-frequency epicardial echocardiography: experimental validation and initial patient studies. Circulation. 1986;73(6):1199–205. DOI: 10.1161/01.CIR.73.6.1199
22. Di Giammarco G, Canosa C, Foschi M, Rabozzi R, Marinelli D, Masuyama S et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding high-resolution epicardial ultrasonography to transit-time flow measurement. European Journal of Cardio-Thoracic Surgery. 2014;45(3):e41–5. DOI: 10.1093/ejcts/ezt580
Review
For citations:
Sigaev I.Yu., Keren M.A., Slivneva I.V., Shonia Z.D., Marapov D.I. The Algorithm for Using Transit-time Flow Measurement and High-resolution Epicardial Ultrasound for Intraoperative Grafts Assessment during Coronary Artery Bypass Surgery. Kardiologiia. 2022;62(8):3-10. https://doi.org/10.18087/cardio.2022.8.n1823