ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Predictors of Obstructive Sleep Apnea Syndrome According to Results of Clinical Examintion and Ambulatory Blood Pressure Monitoring

https://doi.org/10.18087/cardio.2018.9.10169

Abstract

Objective: to determine the predictors of obstructive sleep apnea syndrome (OSAS) basing on clinical examination, results of night pulse oximetry, daily dynamics of heart rate and blood pressure (BP) in men with newly diagnosed arterial hypertension (AH). Materials and methods. Men (n=197, mean age 40.1 ± 8.4 years) with newly diagnosed AH of mild (63%), moderate (26%), and severe (11%) degree. OSAS (Apnea-Hypopnea Index [AHI] ≥5 events per hour) was diagnosed in 156 patients (79%). Patients were divided into four groups depending on the AHI. The control group consisted of 31 men without AH and OSAS. Examination included standard clinical, laboratory and instrumental methods, as well as assessment of daytime sleepiness by the Epworth scale. Diagnostics of OSAS and 24-hour BP monitoring were performed on a portable multifunctional recorder. The duration of sleep was determined from the actigraphy data. Statistical analysis was carried out using descriptive statistics, correlation, regression and Receiver Operating Characteristic (ROC) curve analysis. Results. In the studied sample of patients with AH prevailed individuals with central obesity and dyslipidemia. Mean estimate of daytime sleepiness assessed by the Epworth Sleepiness Scale was 7.8±4.8 points. Of 156 patients with OSAS, its moderate and severe degree (AHI ≥15) was diagnosed in 64%. Predictors of the presence of OSAS were the following: body mass index (odds ratio [OR] 1.13, 95% confidence interval [CI] 1.05-1.22, p<0.002), hypoxemia index (OR 1.12, 95% CI 1.06-1.18, p<0.000l), time indices of hypertension in sleep for diastolic BP (OR 1.03, 95% CI 1.01-1.04, p<0.002) and systolic BP (OR 0.99, 95% CI 0.98-1.00, p<0.045). Basing on these results we created the scoring system for assessment of OSAS risk. The sensitivity of the test was 76%, the specificity - 78%. This model generated a ROC with an area under the curve of 0.848 (95% CI 0.794-0.892, р<0.0001). Conclusion. In men with newly diagnosed AH, snoring and/or daytime sleepiness, predictors of the presence of OSAS were: body mass index, hypoxemia index, and time indices of hypertension during the asleep period for diastolic and systolic BP.

About the Authors

Olga V. Lyshova
Voronezh State Medical University named after N. N. Burdenko
Russian Federation


I. I. Kostenko
Russian Interior Ministry hospital in Voronezh region
Russian Federation


References

1. Hood L. A personal journey of discovery: developing technology and changing biology. Annu Rev Anal Chem (Palo Alto Calif) 2008;1:1-43. DOI: 10.1146/annurev. anchem. 1.031207.113113.

2. Lim D. C., Sutherland K., Cistulli P. A., Pack A. I. P4 medicine approach to obstructive sleep apnoea. Respirology 2017;22 (5):849-860. DOI: 10.1111/resp. 13063.

3. The official STOPBang Questionnaire. http://www.stopbang.ca/ osa/prevalence.php (6 November 2017).

4. Schwartz N. G., Rattner A., Schwartz A. R. et al. Sleep disordered breathing in four resource-limited settings in Peru: prevalence, risk factors, and association with chronic diseases. Sleep 2015;38 (9):1451-1459. DOI: 10.5665/sleep. 4988.

5. Flemons W. W., McNicholas W. T. Clinical prediction of the sleep apnea syndrome. Sleepmedicine reviews 1997;1 (1):19-32. DOI: http://dx.DOI:.org/10.1016/S. 1087-0792 (97) 90003-4

6. Jonas D. E., Amick H. R., Feltner C. et al. Screening for obstructive sleep apnea in adults: an evidence review for the U. S. Preventive services task force. Evidence Synthesis No. 146. AHRQPublication No. 14-05216-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2017.

7. Bozkurt S., Bostanci A., Turhan M. Can Statistical Machine Learning Algorithms Help for Classification of Obstructive Sleep Apnea Severity to Optimal Utilization of Polysomnography Resources? Methods Inf Med 2017;56 (4):308-318. DOI: 10.3414/ME 16-01-0084.

8. Drager L. F., Genta P. R., Pedrosa R. P. et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J. Cardiol 2010;105 (8):1135-1139. DOI: 10.1016/ j.amjcard. 2009.12.017.

9. Natsios G., Pastaka C., Vavougios G. et al. Age, body mass index, and daytime and nocturnal hypoxia as predictors of hypertension in patients with obstructive sleep apnea. J. Clin Hypertens (Greenwich) 2016;18 (2):146-52. DOI: 10.1111/jch. 12645.

10. Deegan P. C., McNicholas W. T. Predictive value of clinical features for the obstructive sleep apnoea syndrome. Eur Respir J. 1996; 9(1):117-24.

11. Dealberto M.J., Ferber C., Garma L. et al. Factors related to sleep apnea syndrome in sleep clinic patients. Chest 1994;105 (6):1753-1758.

12. Звартау Н. Э., Свиряев Ю. В., Ротарь О. П. и др. Параметры суточного мониторирования артериального давления у пациентов с ожирением, артериальной гипертензией и синдромом обструктивного апноэ/гипопноэ во время сна. Артериальная гипертензия 2005;11 (4):239-244

13. Torres G., Sanchez-de-la-Torre M., Martinez-Alonso M. et al. Use of ambulatory blood pressure monitoring for the screening of obstructive sleep apnea. J. Clinical Hypertension 2015;17 (10):802-809. DOI: 10.1111/jch. 12619.

14. Parati G., Stergiou G., O'Brien E. et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J. Hypertens 2014;32 (7):1359-1366. DOI: 10.1097/HJH. 0000000000000221.

15. Kuwabara M., Hoshide S., Hamasaki H., Kario K. Reproducibility of nocturnal blood pressure in sleep apnea syndrome. J. Hypertens 2015;33 (1):e74. DOI: 10.1097/01. hjh. 0000467552.98391.38.

16. Чазова И. Е., Ощепкова Е. В., Жернакова Ю. В. Диагностика и лечение артериальной гипертонии. Клинические рекомендации. Кардиологический вестник 2015; 0 (1):3-30.

17. Johns M. W. A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep 1991;14 (6):540-545.

18. Синкевич Д. А. Универсальный медицинский калькулятор, версия 4.1. http://cardioplaneta.ru/program / 68-universalnyy-medicinskiy-kalkulator-versiya-30. htm (19 мая 2016

19. Иванов С. Ю., Киреенков И. С. Комбинированное суточное мониторирование электрокардиограммы и артериального давления: методические возможности и клинические преимущества. С-Пб.: ИНКАРТ, 2012; 128с

20. Лышова О. В., Провоторов В. М. Внешнее дыхание и ритм сердца (атлас динамических реопневмограмм и электрокардиограмм). СПб: Инкарт, 2006; 271с

21. McNicolas W., Pevernagie D. Sleep-related breathing disorders. In: European Sleep Medicine Textbook. Eds.: Bassetti C., Dogas Z., Peigneux P. European Sleep Research Society (ESRS), Regensburg 2014; 215-275.

22. Pouliot Z., Peters M., Neufeld H., Kryger M. H. Using self-reported questionnaire data to prioritize OSA patients for polysomnography. Sleep 1997;20 (3):232-236.

23. Saldias P. F., Jorquera A.J., Diaz P. O. Predictive value of clinical features and nocturnal oximetry for the detection of obstructive sleep apnea syndrome. Rev Med Chil 2010;138 (8):941-950. DOI:/S0034-98872010000800001.

24. Kaimakamis E., Tsara V., Bratsas C. et al. Evaluation of a Decision Support System for Obstructive Sleep Apnea with Nonlinear Analysis of Respiratory Signals. PLoS One 2016;11 (3):e0150163. DOI: 10.1371/journal. pone. 0150163.

25. Бузунов Р. В., Иванова И. Л., Кононов Ю. Н. и др. Компьютерная пульсоксиметрия в диагностике нарушений дыхания во сне. Учебное пособие. Ижевск 2013; 20 с.

26. Свиряев Ю. В. Новая медицинская технология «Способ выявления синдрома обструктивного апноэ во сне у больных артериальной гипертензией», серия АА № 0001541, ФС № 2008/129, от 26.07.2008


Review

For citations:


Lyshova O.V., Kostenko I.I. Predictors of Obstructive Sleep Apnea Syndrome According to Results of Clinical Examintion and Ambulatory Blood Pressure Monitoring. Kardiologiia. 2018;58(9):12-20. (In Russ.) https://doi.org/10.18087/cardio.2018.9.10169

Views: 987


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)