Expert opinion. Spironolactone: a new twist on an old story
https://doi.org/10.18087/cardio.2021.10.n1734
Abstract
The article presents recent data on possibilities of a broader use of mineralocorticoid receptor antagonists for existing indications and of expanding indications for the use of this pharmaceutical group in the context of the novel coronavirus infection COVID-19. The authors discussed prospects for expanded detection of aldosteronism using a new diagnostic approach, including an additional evaluation of blood pressure response to spironolactone.
About the Authors
Ya. A. OrlovaRussian Federation
Head of the Department of Age-Associated Diseases Medical Research Center of Moscow State University M.V. Lomonosova
Yu. L. Begrambekova
Russian Federation
Leading Researcher Medical Research and Education Center of Moscow State University M.V. Lomonosova
A. G. Plisuk
Russian Federation
Senior Researcher
References
1. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Circulation. 2000;102(22):2700–6. PMID: 11094035
2. Skvortsov A.A., Narusov O.Yu., Muksinova M.D., Protasov V.N., Protasova D.E., Kuznetsova T.V. et al. Clinical significance of serial biomarkers activity determination after acute heart failure decompensation: sST2 NTproBNP role during long-term follow-up. Kardiologiia. 2018;58(12S):27–41. DOI: 10.18087/cardio.2634
3. Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H et al. Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms. New England Journal of Medicine. 2011;364(1):11–21. DOI: 10.1056/NEJMoa1009492
4. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal. 2018;39(33):3021–104. DOI: 10.1093/eurheartj/ehy339
5. Kobalava Zh.D., Konradi A.O., Nedogoda S.V., Shlyakhto E.V., Arutyunov G.P., Baranova E.I. et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):149–218. DOI: 10.15829/1560-4071-2020-3-3786
6. Carey RM, Douglas JG, Schweikert JR, Liddle GW. The syndrome of essential hypertension and suppressed plasma renin activity. Normalization of blood pressure with spironolactone. Archives of Internal Medicine. 1972;130(6):849–54. PMID: 5082464
7. Rodilla E, Costa JA, Pérez-Lahiguera F, Baldó E, González C, Pascual JM. Spironolactone and Doxazosin Treatment in Patients With Resistant Hypertension. Revista Española de Cardiología (English Edition). 2009;62(2):158–66. DOI: 10.1016/S1885-5857(09)71534-8
8. Lane DA, Shah S, Beevers DG. Low-dose spironolactone in the management of resistant hypertension: a surveillance study. Journal of Hypertension. 2007;25(4):891–4. DOI: 10.1097/HJH.0b013e328014954d
9. Gaddam K, Pimenta E, Thomas SJ, Cofield SS, Oparil S, Harding SM et al. Spironolactone reduces severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report. Journal of Human Hypertension. 2010;24(8):532–7. DOI: 10.1038/jhh.2009.96
10. Engbaek M, Hjerrild M, Hallas J, Jacobsen IA. The effect of lowdose spironolactone on resistant hypertension. Journal ofthe American Society of Hypertension. 2010;4(6):290–4. DOI: 10.1016/j.jash.2010.10.001
11. Chapman N, Dobson J, Wilson S, Dahlöf B, Sever PS, Wedel H et al. Effect of Spironolactone on Blood Pressure in Subjects With Resistant Hypertension. Hypertension. 2007;49(4):839–45. DOI: 10.1161/01.HYP.0000259805.18468.8c
12. Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. The Lancet Diabetes & Endocrinology. 2018;6(6):464–75. DOI: 10.1016/S2213-8587(18)30071-8
13. Conn JW. Primary aldosteronism. The Journal of Laboratory and Clinical Medicine. 1955;45(4):661–4. PMID: 14368032
14. Funder J. Primary aldosteronism. Trends in Cardiovascular Medicine. 2021;S1050-1738(21)00043-8. [Epub ahead of print]. DOI: 10.1016/j.tcm.2021.03.005
15. Xu F, Gao Z, Wang G, Gao Y, Guo Y, Guo Y et al. Prevalence, Subtype Classification, and Outcomes of Treatment of Primary Aldosteronism: A Prospective Study in China. Endocrine Practice. 2021;27(5):478–83. DOI: 10.1016/j.eprac.2020.10.007
16. Brown JM, Siddiqui M, Calhoun DA, Carey RM, Hopkins PN, Williams GH et al. The Unrecognized Prevalence of Primary Aldosteronism: A Cross-sectional Study. Annals of Internal Medicine. 2020;173(1):10–20. DOI: 10.7326/M20-0065
17. Pilz S, Grübler MR, Theiler-Schwetz V, Malle O, Trummer C. The Unrecognized Prevalence of Primary Aldosteronism. Annals of Internal Medicine. 2020;173(8):681–2. DOI: 10.7326/L20-1094
18. Vaidya A, Carey RM. Evolution of the Primary Aldosteronism Syndrome: Updating the Approach. The Journal of Clinical Endocrinology & Metabolism. 2020;105(12):3771–83. DOI: 10.1210/clinem/dgaa606
19. Ruilope LM, Ruiz-Hurtado G, Tamargo J. Adequate blood pressure control unattainable without adequate recognition and treatment of primary aldosteronism. Trends in Cardiovascular Medicine. 2021;S1050-1738(21)00047-5. [Epub ahead of print]. DOI: 10.1016/j.tcm.2021.04.003
20. Mehdi A, Rao P, Thomas G. Our evolving understanding of primary aldosteronism. Cleveland Clinic Journal of Medicine. 2021;88(4):221–7. DOI: 10.3949/ccjm.88a.20166
21. Kaneko H, Umakoshi H, Ogata M, Wada N, Iwahashi N, Fukumoto T et al. Machine learning based models for prediction of subtype diagnosis of primary aldosteronism using blood test. Scientific Reports. 2021;11(1):9140. DOI: 10.1038/s41598-021-88712-8
22. Li N, Huang J, Zheng B, Cai H, Liu M, Liu L. Cost‐effectiveness Analysis of Screening for Primary Aldosteronism in China. Clinical Endocrinology. 2021;95(3):414–22. DOI: 10.1111/cen.14478
23. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. DOI: 10.1016/j.cell.2020.02.052
24. Mackey K, King VJ, Gurley S, Kiefer M, Liederbauer E, Vela K et al. Risks and Impact of Angiotensin-Converting Enzyme Inhibitors or Angiotensin-Receptor Blockers on SARS-CoV-2 Infection in Adults: A Living Systematic Review. Annals of Internal Medicine. 2020;173(3):195–203. DOI: 10.7326/M20-1515
25. Chen Z-W, Tsai C-H, Pan C-T, Chou C-H, Liao C-W, Hung C-S et al. Endothelial Dysfunction in Primary Aldosteronism. International Journal of Molecular Sciences. 2019;20(20):5214. DOI: 10.3390/ijms20205214
26. Vicenzi M, Di Cosola R, Ruscica M, Ratti A, Rota I, Rota F et al. The liaison between respiratory failure and high blood pressure: evidence from COVID-19 patients. European Respiratory Journal. 2020;56(1):2001157. DOI: 10.1183/13993003.01157-2020
27. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. 2020;383(2):120–8. DOI: 10.1056/NEJMoa2015432
28. Wang J, Wang BJ, Yang JC, Wang MY, Chen C, Luo GX et al. Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures. Zhonghua Shao Shang Za Zhi. 2020;36(8):691–7. DOI: 10.3760/cma.j.cn501120-20200307-00132
29. Zhao H, Gu DW, Li HT, Ge QF, Li GP. Inhibitory effects of spironolactone on myocardial fibrosis in spontaneously hypertensive rats. Genetics and Molecular Research. 2015;14(3):10315–21. DOI: 10.4238/2015.August.28.17
30. Funder JW. Spironolactone in cardiovascular disease: an expanding universe? F1000Research. 2017;6:1738. DOI: 10.12688/f1000research.11887.1
31. Yavas G, Yavas C, Celik E, Sen E, Ata O, Afsar RE. The impact of spironolactone on the lung injury induced by concomitant trastuzumab and thoracic radiotherapy. International Journal of Radiation Research. 2019;17(1):87–95. DOI: 10.18869/acadpub.ijrr.17.1.87
32. Ji W-J, Ma Y-Q, Zhou X, Zhang Y-D, Lu R-Y, Guo Z-Z et al. Spironolactone Attenuates Bleomycin-Induced Pulmonary Injury Partially via Modulating Mononuclear Phagocyte Phenotype Switching in Circulating and Alveolar Compartments. PLoS ONE. 2013;8(11):e81090. DOI: 10.1371/journal.pone.0081090
33. Barut F, Ozacmak VH, Turan I, Sayan-Ozacmak H, Aktunc E. Reduction of Acute Lung Injury by Administration of Spironolactone After Intestinal Ischemia and Reperfusion in Rats. Clinical & Investigative Medicine. 2016;39(1):E15-24. DOI: 10.25011/cim.v39i1.26326
34. Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. 2020. [Av. at: http://medrxiv.org/lookup/doi/10.1101/2020.03.30.20047878].
35. Atalay C, Dogan N, Aykan S, Gundogdu C, Keles MS. The efficacy of spironolactone in the treatment of acute respiratory distress syndrome-induced rats. Singapore Medical Journal. 2010;51(6):501–5. PMID: 20658111
36. Chen D, Li X, Song Q, Hu C, Su F, Dai J et al. Assessment of Hypokalemia and Clinical Characteristics in Patients with Coronavirus Disease 2019 in Wenzhou, China. JAMA Network Open. 2020;3(6):e2011122. DOI: 10.1001/jamanetworkopen.2020.11122
37. Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A et al. Rates of Hyperkalemia after Publication of the Randomized Aldactone Evaluation Study. New England Journal of Medicine. 2004;351(6):543–51. DOI: 10.1056/NEJMoa040135
38. Villard O, Morquin D, Molinari N, Raingeard I, Nagot N, Cristol J-P et al. The Plasmatic Aldosterone and C-Reactive Protein Levels, and the Severity of Covid-19: The Dyhor-19 Study. Journal of Clinical Medicine. 2020;9(7):2315. DOI: 10.3390/jcm9072315
39. Jeon D, Son M, Choi J. Effect of Spironolactone on COVID-19 in Patients With Underlying Liver Cirrhosis: A Nationwide Case-Control Study in South Korea. Frontiers in Medicine. 2021;8:629176. DOI: 10.3389/fmed.2021.629176
40. Mareev V.Yu., Orlova Ya.A., Plisyk A.G., Pavlikova E.P., Matskeplishvili S.T., Akopyan Zh.A. et al. Results of an open prospective controlled comparative study on the treatment of new coronavirus infection (COVID-19): Bromhexine and spironolactone for the treatment of coronavirus Infection requiring hospitalization (BISCUIT). Kardiologiia. 2020;60(11):4–15. DOI: 10.18087/cardio.2020.11.1440
41. Mareev V.Yu., Orlova Ya.A., Pavlikova E.P., Matskeplishvili S.T., Akopyan Zh.A., Plisyk A.G. et al. Combination therapy at an early stage of the novel coronavirus infection (COVID-19). Case series and design of the clinical trial “BromhexIne and Spironolactone for CoronavirUs Infection requiring hospiTalization (BISCUIT)”. Kardiologiia. 2020;60(8):4–15. DOI: 10.18087/cardio.2020.8.n1307
42. Vicenzi M, Ruscica M, Iodice S, Rota I, Ratti A, Di Cosola R et al. The Efficacy of the Mineralcorticoid Receptor Antagonist Canrenone in COVID-19 Patients. Journal of Clinical Medicine. 2020;9(9):2943. DOI: 10.3390/jcm9092943
Review
For citations:
Orlova Ya.A., Begrambekova Yu.L., Plisuk A.G. Expert opinion. Spironolactone: a new twist on an old story. Kardiologiia. 2021;61(10):99-103. (In Russ.) https://doi.org/10.18087/cardio.2021.10.n1734