Biomarkers in Heart Failure: Current and Future
https://doi.org/10.18087/cardio.2021.5.n1530
Abstract
Heart failure (HF) is the ending of practically all cardiovascular diseases and the reason for hospitalization of 49% of patients in a cardiological hospital. Available instrumental diagnostic methods and biomarkers not always allow verification of HF, particularly in patients with preserved left ventricular ejection fraction. Prediction of chronic HF in patients with risk factors faces great difficulties. Currently, natriuretic peptides (NUP) are widely used for the diagnosis, prognosis and management of patients with HF and are included in clinical guidelines for diagnosis and treatment of HF. Following multiple studies, the understanding of NUP significance has changed. This resulted in a need for new biomarkers to improve the insight into the process of HF and to personalize the treatment by better individual phenotyping. In addition, current technologies, such as transcriptomic, proteomic and metabolomic analyses, provide identification of new biomarkers and better understanding of features of the HF pathogenesis. The aim of this study was to discuss recent reports on NUP and novel, most promising biomarkers in respect of their possible use in clinical practice.
About the Authors
M. V. KozhevnikovaRussian Federation
associate professor of the Hospital Therapy Department №1 of the Sechenov University, PhD, MD
Yu. N. Belenkov
Russian Federation
The Head of the Hospital Therapy Department №1 of the Sechenov University, Professor, PhD, MD
References
1. Ministry of Health of Russian Federation. Chronic heart failure. Clinical recommendations. KR 156/1. –Moscow. –112p. Av. at: https://democenter.nitrosbase.com/clinrecalg5/api.ashx?op=GetClinrecPdf&id=156_1. 2020.
2. Mareev V.Yu., Fomin I.V., Ageev F.T., Begrambekova Yu.L., Vasyuk Yu.A., Garganeeva A.A. et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(6S):8–158. DOI: 10.18087/cardio.2475
3. Califf RM. Biomarker definitions and their applications. Experimental Biology and Medicine. 2018;243(3):213–21. DOI: 10.1177/1535370217750088
4. Braunwald E. Biomarkers in Heart Failure. New England Journal of Medicine. 2008;358(20):2148–59. DOI: 10.1056/NEJMra0800239
5. Jamieson JD, Palade GE. Specific granules in atrial muscle cells. Journal of Cell Biology. 1964;23(1):151–72. DOI: 10.1083jcb.23.1.151
6. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Reprinted from Life Sci. 28:89-94, 1981. Journal of the American Society of Nephrology. 2001;12(2):403–9. PMID: 11158233
7. Januzzi JL, Chen-Tournoux AA, Christenson RH, Doros G, Hollander JE, Levy PD et al. N-Terminal Pro–B-Type Natriuretic Peptide in the Emergency Department. Journal of the American College of Cardiology. 2018;71(11):1191–200. DOI: 10.1016/j.jacc.2018.01.021
8. Kramer F, Sabbah HN, Januzzi JJ, Zannad F, Peter van Tintelen J, Schelbert EB et al. Redefining the role of biomarkers in heart failure trials: expert consensus document. Heart Failure Reviews. 2017;22(3):263–77. DOI: 10.1007/s10741-017-9608-5
9. Ibrahim NE, Burnett JC, Butler J, Camacho A, Felker GM, Fiuzat M et al. Natriuretic Peptides as Inclusion Criteria in Clinical Trials. JACC: Heart Failure. 2020;8(5):347–58. DOI: 10.1016/j.jchf.2019.12.010
10. Salah K, Kok WE, Eurlings LW, Bettencourt P, Pimenta JM, Metra M et al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ÉLAN-HF Score. Heart. 2014;100(2):115–25. DOI: 10.1136/heartjnl-2013-303632
11. York MK, Gupta DK, Reynolds CF, Farber-Eger E, Wells QS, Bachmann KN et al. B-Type Natriuretic Peptide Levels and Mortality in Patients With and Without Heart Failure. Journal of the American College of Cardiology. 2018;71(19):2079–88. DOI: 10.1016/j.jacc.2018.02.071
12. Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I et al. Natriuretic Peptide–Based Screening and Collaborative Care for Heart Failure: The STOP-HF Randomized Trial. JAMA. 2013;310(1):66–74. DOI: 10.1001/jama.2013.7588
13. Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E et al. Plasma Brain Natriuretic Peptide-Guided Therapy to Improve Outcome in Heart Failure. Journal of the American College of Cardiology. 2007;49(16):1733–9. DOI: 10.1016/j.jacc.2006.10.081
14. Januzzi JL, Rehman SU, Mohammed AA, Bhardwaj A, Barajas L, Barajas J et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. Journal of the American College of Cardiology. 2011;58(18):1881–9. DOI: 10.1016/j.jacc.2011.03.072
15. Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, Houston-Miller N et al. Effect of Natriuretic Peptide – Guided Therapy on Hospitalization or Cardiovascular Mortality in High-Risk Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2017;318(8):713–20. DOI: 10.1001/jama.2017.10565
16. Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. European Journal of Heart Failure. 2019;21(6):715–31. DOI: 10.1002/ejhf.1494
17. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL et al. Distribution and Clinical Correlates of the Interleukin Receptor Family Member Soluble ST2 in the Framingham Heart Study. Clinical Chemistry. 2012;58(12):1673–81. DOI: 10.1373/clinchem.2012.192153
18. Skvortsov A.A., Narusov O.Yu., Muksinova M.D. Soluble ST2 – biomarker for prognosis and monitoring in decompensated heart failure. Kardiologiia. 2019;59(11S):18–27. DOI: 10.18087/cardio.n765
19. Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL et al. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure. JACC: Heart Failure. 2017;5(4):280–6. DOI: 10.1016/j.jchf.2016.09.010
20. Cunningham JW, Claggett BL, O’Meara E, Prescott MF, Pfeffer MA, Shah SJ et al. Effect of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients With HFpEF. Journal of the American College of Cardiology. 2020;76(5):503–14. DOI: 10.1016/j.jacc.2020.05.072
21. Skvortsov A.A., Protasov V.N., Narusov O.Yu., Koshkina D.E., Nasonova S.N., Masenko V.P. et al. Soluble supression of tumorogenicity 2 increases opportunities in patients long-term risk stratification after acute heart failure decompensation. Kardiologiia. 2017;57(1):48–58. DOI: 10.18565/cardio.2017.1.48-58
22. Huet F, Nicoleau J, Dupuy A, Curinier C, Breuker C, Castet‐Nicolas A et al. STADE‐HF (sST2 As a help for management of HF): a pilot study. ESC Heart Failure. 2020;7(2):774–8. DOI: 10.1002/ehf2.12663
23. van Kimmenade RR, Januzzi JL, Ellinor PT, Sharma UC, Bakker JA, Low AF et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. Journal of the American College of Cardiology. 2006;48(6):1217–24. DOI: 10.1016/j.jacc.2006.03.061
24. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L et al. Galectin-3 in Ambulatory Patients With Heart Failure: Results From the HF-ACTION Study. Circulation: Heart Failure. 2012;5(1):72–8. DOI: 10.1161/CIRCHEARTFAILURE.111.963637
25. Dubolazova Yu.V., Drapkina O.M. Galectin-3 and NT-proBNP as biomarkers of heart failure decompensation. Russian Cardiology Journal. 2017;22(1):95–101. DOI: 10.15829/1560-4071-2017-1-95-101
26. Kanukurti J, Mohammed N, Sreedevi NN, Khan SA, Baba KSSS, Bhaskar MV et al. Evaluation of Galectin-3 as a Novel Diagnostic Biomarker in Patients with Heart Failure with Preserved Ejection Fraction. Journal of Laboratory Physicians. 2020;12(2):126–32. DOI: 10.1055/s-0040-1716608
27. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. European Journal of Heart Failure. 2013;15(5):511–8. DOI: 10.1093/eurjhf/hfs205
28. Bayes-Genis A, de Antonio M, Vila J, Peñafiel J, Galán A, Barallat J et al. Head-to-Head Comparison of 2 Myocardial Fibrosis Biomarkers for Long-Term Heart Failure Risk Stratification. Journal of the American College of Cardiology. 2014;63(2):158–66. DOI: 10.1016/j.jacc.2013.07.087
29. Seronde M-F, Vausort M, Gayat E, Goretti E, Ng LL, Squire IB et al. Circulating microRNAs and Outcome in Patients with Acute Heart Failure. PLOS ONE. 2015;10(11):e0142237. DOI: 10.1371/journal.pone.0142237
30. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of Plasma miRNAs in Congestive Heart Failure. Circulation Journal. 2011;75(2):336–40. DOI: 10.1253/circj.CJ-10-0457
31. Wong LL, Zou R, Zhou L, Lim JY, Phua DCY, Liu C et al. Combining Circulating MicroRNA and NT-proBNP to Detect and Categorize Heart Failure Subtypes. Journal of the American College of Cardiology. 2019;73(11):1300–13. DOI: 10.1016/j.jacc.2018.11.060
32. Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. European Journal of Heart Failure. 2013;15(11):1277–88. DOI: 10.1093/eurjhf/hft088
33. Akat KM, Moore-McGriff D, Morozov P, Brown M, Gogakos T, Correa Da Rosa J et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proceedings of the National Academy of Sciences. 2014;111(30):11151–6. DOI: 10.1073/pnas.1401724111
34. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE et al. MiR423-5p As a Circulating Biomarker for Heart Failure. Circulation Research. 2010;106(6):1035–9. DOI: 10.1161 CIRCRESAHA.110.218297
35. Bayés-Genis A, Lanfear DE, de Ronde MWJ, Lupón J, Leenders JJ, Liu Z et al. Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients. European Journal of Heart Failure. 2018;20(1):67–75. DOI: 10.1002/ejhf.984
36. Velikiy D.A., Gichkun O.E., Sharapchenko S.O., Shevchenko O.P., Shevchenko A.O. MicroRNA expression levels in early and long-term period following heart transplantation. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):26–34. DOI: 10.15825/1995-1191-2020-1-26-34
37. Ellis KL, Cameron VA, Troughton RW, Frampton CM, Ellmers LJ, Richards AM. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. European Journal of Heart Failure. 2013;15(10):1138–47. DOI: 10.1093/eurjhf/hft078
38. Watson CJ, Gupta SK, O’Connell E, Thum S, Glezeva N, Fendrich J et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. European Journal of Heart Failure. 2015;17(4):405–15. DOI: 10.1002/ejhf.244
39. Wong LL, Armugam A, Sepramaniam S, Karolina DS, Lim KY, Lim JY et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction: Circulating microRNAs in heart failure. European Journal of Heart Failure. 2015;17(4):393–404. DOI: 10.1002/ejhf.223
40. Chen Y-T, Wong LL, Liew OW, Richards AM. Heart Failure with Reduced Ejection Fraction (HFrEF) and Preserved Ejection Fraction (HFpEF): The Diagnostic Value of Circulating MicroRNAs. Cells. 2019;8(12):1651. DOI: 10.3390/cells8121651
41. Viereck J, Thum T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circulation Research. 2017;120(2):381–99. DOI: 10.1161/CIRCRESAHA.116.308434
42. Belenkov Yu.N., Privalova E.V., Kozhevnikova M.V., Korobkova E.O., Ilgisonis I.S., Kaplunova V.Yu. et al. Metabolomic Profiling of Patients With Cardiovascular Diseases. Kardiologiia. 2018;58(9):59–62. DOI: 10.18087/cardio.2018.9.10172
43. Andersson C, Liu C, Cheng S, Wang TJ, Gerszten RE, Larson MG et al. Metabolomic signatures of cardiac remodelling and heart failure risk in the community. ESC Heart Failure. 2020;7(6):3707–15. DOI: 10.1002/ehf2.12923
44. Polzin A, Piayda K, Keul P, Dannenberg L, Mohring A, Gräler M et al. Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. Journal of Molecular and Cellular Cardiology. 2017;110:35–7. DOI: 10.1016/j.yjmcc.2017.07.004
45. Kukharenko A, Brito A, Kozhevnikova MV, Moskaleva N, Markin PA, Bochkareva N et al. Relationship between the plasma acylcarnitine profile and cardiometabolic risk factors in adults diagnosed with cardiovascular diseases. Clinica Chimica Acta. 2020;507:250–6. DOI: 10.1016/j.cca.2020.04.035
46. Cheng M-L, Wang C-H, Shiao M-S, Liu M-H, Huang Y-Y, Huang C-Y et al. Metabolic Disturbances Identified in Plasma Are Associated With Outcomes in Patients With Heart Failure: diagnostic and prognostic value of metabolomics. Journal of the American College of Cardiology. 2015;65(15):1509–20. DOI: 10.1016/j.jacc.2015.02.018
47. Kang S-M, Park J-C, Shin M-J, Lee H, Oh J, Ryu DH et al. 1H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. Clinical Biochemistry. 2011;44(4):293–9. DOI: 10.1016/j.clinbiochem.2010.11.010
48. Delles C, Rankin NJ, Boachie C, McConnachie A, Ford I, Kangas A et al. Nuclear magnetic resonance-based metabolomics identifies phenylalanine as a novel predictor of incident heart failure hospitalisation: results from PROSPER and FINRISK 1997. European Journal of Heart Failure. 2018;20(4):663–73. DOI: 10.1002/ejhf.1076
49. Lanfear DE, Gibbs JJ, Li J, She R, Petucci C, Culver JA et al. Targeted Metabolomic Profiling of Plasma and Survival in Heart Failure Patients. JACC: Heart Failure. 2017;5(11):823–32. DOI: 10.1016/j.jchf.2017.07.009
50. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–61. DOI: 10.1161/CIR.0000000000000509
Review
For citations:
Kozhevnikova M.V., Belenkov Yu.N. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4-16. https://doi.org/10.18087/cardio.2021.5.n1530