Взгляд на гипертрофию миокарда с позиции транскриптомики и метаболомики
https://doi.org/10.18087/cardio.2020.4.n1063
Аннотация
В обзоре представлены основные направления в изучении гипертрофии миокарда с позиции транскриптомики и метаболомики. Понимание механизмов, запускающих гипертрофию миокарда, позволит перейти от фундаментальных исследований к персонифицированному клиническому применению инновационных технологий в лечении заболеваний сердца, таких как таргетная терапия. В настоящее время разработаны определенные методы диагностики и прогнозирования сердечно-сосудистых заболеваний, основанные на метаболомном профилировании и оценке экспрессии микроРНК. Прогресс в области изучения молекулярных и генетических процессов, лежащих в основе развития сердечно-сосудистых заболеваний, может дать неоценимо важную информацию для клинической кардиологии.
Ключевые слова
Об авторах
Г. А. ШакарьянцРоссия
к.м.н., ассистент кафедры Госпитальной терапии №1 ИКМ им. Н.В. Склифосовского Сеченовского Университета
М. В. Кожевникова
Россия
к.м.н., асс. кафедры Госпитальной терапии №1 ИКМ им. Н.В. Склифосовского Сеченовского Университета
В. Ю. Каплунова
Россия
д.м.н., доцент кафедры Госпитальной терапии №1 ИКМ им. Н.В. Склифосовского Сеченовского Университета
Е. В. Привалова
Россия
д.м.н., проф. кафедры Госпитальной терапии №1 ИКМ им. Н.В. Склифосовского Сеченовского Университета
А. С. Лишута
Россия
к.м.н., доцент кафедры Госпитальной терапии №1 ИКМ им. Н.В. Склифосовского Сеченовского Университета
Е. О. Коробкова
Россия
аспирант кафедры Госпитальной терапии №1 ИКМ им. Н.В. Склифосовского Сеченовского Университета
Ю. Н. Беленков
Россия
академик РАН, д.м.н., проф., зав. кафедрой Госпитальной терапии №1 ИКМ им. Н.В. Склифосовского Сеченовского Университета
Список литературы
1. Thakur C, Chen F. Connections between metabolism and epigenetics in cancers. Seminars in Cancer Biology. 2019;57:52–8. DOI: 10.1016/j.semcancer.2019.06.006
2. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology. 2007;8(1):23–36. DOI: 10.1038/nrm2085
3. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research. 2008;19(1):92–105. DOI: 10.1101/gr.082701.108
4. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics. 2004;5(7):522–31. DOI: 10.1038/nrg1379
5. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73. DOI: 10.1038/nature03315
6. Sayed ASM, Xia K, Salma U, Yang T, Peng J. Diagnosis, Prognosis and Therapeutic Role of Circulating miRNAs in Cardiovascular Diseases. Heart, Lung and Circulation. 2014;23(6):503–10. DOI: 10.1016/j.hlc.2014.01.001
7. Luo Z, Zhang L, Li Z, Li X, Li G, Yu H et al. An in silicoanalysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Medical Genomics. 2012;5(1):3. DOI: 10.1186/1755-8794-5-3
8. Sonkoly E, Pivarcsi A. Advances in microRNAs: implications for immunity and inflammatory diseases. Journal of Cellular and Molecular Medicine. 2008;13(1):24–38. DOI: 10.1111/j.1582-4934.2008.00534.x
9. Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q et al. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver International. 2012;32(5):752–60. DOI: 10.1111/j.1478-3231.2011.02750.x
10. Dumortier O, Obberghen E. MicroRNAs in pancreas development. Diabetes, Obesity and Metabolism. 2012;14(Suppl 3):22–8. DOI: 10.1111/j.1463-1326.2012.01656.x
11. Hinton A, Hunter S, Reyes G, Fogel GB, King CC. From Pluripotency to Islets. Advances in Genetics. 2012;79:1–34. DOI: 10.1016/B978-0-12-394395-8.00001-3
12. Ouyang L, Shi Z, Zhao S, Wang F-T, Zhou T-T, Liu B et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Proliferation. 2012;45(6):487–98. DOI: 10.1111/j.1365-2184.2012.00845.x
13. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. DOI: 10.1038/nature02871
14. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research. 2008;18(10):997–1006. DOI: 10.1038/cr.2008.282
15. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–20. DOI: 10.1038/nature03817
16. Sayed D, Hong C, Chen I-Y, Lypowy J, Abdellatif M. MicroRNAs Play an Essential Role in the Development of Cardiac Hypertrophy. Circulation Research. 2007;100(3):416–24. DOI: 10.1161/01.RES.0000257913.42552.23
17. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA. Science. 2007;316(5824):575–9. DOI: 10.1126/science.1139089
18. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences. 2006;103(48):18255–60. DOI: 10.1073/pnas.0608791103
19. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Research. 2004;32(22):e188. DOI: 10.1093/nar/gnh186
20. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of Tissue-Specific MicroRNAs from Mouse. Current Biology. 2002;12(9):735–9. DOI: 10.1016/S0960-9822(02)00809-6
21. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a Biomarker of Myocardial Injury. Clinical Chemistry. 2009;55(11):1944–9. DOI: 10.1373/clinchem.2009.125310
22. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences. 2007;104(5):1604–9. DOI: 10.1073/pnas.0610731104
23. Condorelli G, Latronico MVG, Dorn GW. MicroRNAs in heart disease: putative novel therapeutic targets? European Heart Journal. 2010;31(6):649–58. DOI: 10.1093/eurheartj/ehp573
24. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urologic Oncology. 2010;28(6):655–61. DOI: 10.1016/j.urolonc.2009.01.027
25. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Research. 2010;38(20):7248–59. DOI: 10.1093/nar/gkq601
26. Kang K, Peng X, Luo J, Gou D. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. Journal of Animal Science and Biotechnology. 2012;3(1):4–12. DOI: 10.1186/2049-1891-3-4
27. Kochetov A.G., Zhirov I.V., Masenko V.P., Gimadiev R.R., Lyang O.V., Tereschenko S.N. Prospects for the use of miRNA in the diagnosis and treatment of heart failure. Kardiologicheskii Vestnik. 2014;9(2):62–7. [Russian: Кочетов А.Г., Жиров И.В., Масенко В.П., Гимадиев Р.Р., Лянг О.В., Терешенко С.Н. Перспективы применения микроРНК в диагностике и терапии сердечной недостаточности. Кардиологический Вестник. 2014;9(2):62-7]
28. Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Molecular Medicine. 2012;4(1):3–14. DOI: 10.1002/emmm.201100191
29. Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa Martins P et al. Circulating miR-29a, Among Other Up-Regulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients with Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2014;63(9):920–7. DOI: 10.1016/j.jacc.2013.09.041
30. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proceedings of the National Academy of Sciences. 1971;68(10):2374–6. DOI: 10.1073/pnas.68.10.2374
31. Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE et al. Potential Impact and Study Considerations of Metabolomics in Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. Circulation: Cardiovascular Genetics. 2017;10(2):e000032. DOI: 10.1161/HCG.0000000000000032
32. Perrino C, Barabási A-L, Condorelli G, Davidson SM, De Windt L, Dimmeler S et al. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research. 2017;113(7):725–36. DOI: 10.1093/cvr/cvx070
33. Doenst T, Pytel G, Schrepper A, Amorim P, Farber G, Shingu Y et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovascular Research. 2010;86(3):461–70. DOI: 10.1093/cvr/cvp414
34. Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J et al. Energy Metabolic Reprogramming in the Hypertrophied and Early Stage Failing Heart: A Multisystems Approach. Circulation: Heart Failure. 2014;7(6):1022–31. DOI: 10.1161/CIRCHEARTFAILURE.114.001469
35. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews. 2010;90(1):207–58. DOI: 10.1152/physrev.00015.2009
36. Drosatos K, Pollak NM, Pol CJ, Ntziachristos P, Willecke F, Valenti M-C et al. Cardiac Myocyte KLF5 Regulates Ppara Expression and Cardiac Function. Circulation Research. 2016;118(2):241–53. DOI: 10.1161/CIRCRESAHA.115.306383
37. Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Current Opinion in Lipidology. 2011;22(2):86–92. DOI: 10.1097/MOL.0b013e3283428d9d
38. El-Aroussy W, Rizk A, Mayhoub G, Aleem SA, El-Tobgy S. Plasma carnitine levels as a marker of impaired left ventricular functions. Molecular and Cellular Biochemistry. 2000;213(1–2):37–41. DOI: 10.1023/A:1007142919941
39. Evaristi MF, Caubère C, Harmancey R, Desmoulin F, Peacock WF, Berry M et al. Increased mean aliphatic lipid chain length in left ventricular hypertrophy secondary to arterial hypertension: A cross-sectional study. Medicine. 2016;95(46):e4965. DOI: 10.1097/MD.0000000000004965
40. Fisher DJ. Oxygenation and metabolism in the developing heart. Seminars in Perinatology. 1984;8(3):217–25. PMID: 6234661
41. Kolwicz SC, Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovascular Research. 2011;90(2):194–201. DOI: 10.1093/cvr/cvr071
42. Goikoetxea M, Beaumont J, Gonzalez A, Lopez B, Querejeta R, Larman M et al. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovascular Research. 2006;69(4):899–907. DOI: 10.1016/j.cardiores.2005.11.016
43. Neubauer S. The Failing Heart – An Engine Out of Fuel. New England Journal of Medicine. 2007;356(11):1140–51. DOI: 10.1056/NEJMra063052
44. Lorén C, Dahl C, Do L, Almaas V, Geiran O, Mörner S et al. Low Molecular Mass Myocardial Hyaluronan in Human Hypertrophic Cardiomyopathy. Cells. 2019;8(2):97. DOI: 10.3390/cells8020097
45. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G et al. Plasma Concentrations and Genetic Variation of Matrix Metalloproteinase 9 and Prognosis of Patients with Cardiovascular Disease. Circulation. 2003;107(12):1579–85. DOI: 10.1161/01.CIR.0000058700.41738.12
46. Chakraborty S, Kaur S, Guha S, Batra SK. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2012;1826(1):129–69. DOI: 10.1016/j.bbcan.2012.03.008
47. Marques FZ, Prestes PR, Byars SG, Ritchie SC, Würtz P, Patel SK et al. Experimental and Human Evidence for Lipocalin‐2 (Neutrophil Gelatinase‐Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and Heart Failure. Journal of the American Heart Association. 2017;6(6):e005971. DOI: 10.1161/JAHA.117.005971
Рецензия
Для цитирования:
Шакарьянц Г.А., Кожевникова М.В., Каплунова В.Ю., Привалова Е.В., Лишута А.С., Коробкова Е.О., Беленков Ю.Н. Взгляд на гипертрофию миокарда с позиции транскриптомики и метаболомики. Кардиология. 2020;60(4):120-129. https://doi.org/10.18087/cardio.2020.4.n1063
For citation:
Shakaryants G.A., Kozhevnikova M.V., Kaplunova V.Yu., Privalova E.V., Lishuta A.S., Korobkova E.O., Belenkov Yu.N. Focus on the Myocardial Hypertrophy from the Perspective of Transcriptomics and Metabolomics. Kardiologiia. 2020;60(4):120-129. (In Russ.) https://doi.org/10.18087/cardio.2020.4.n1063