ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

MicroRNAs as Biomarkers of Cardiovascular Diseases

https://doi.org/10.18087/cardio.2018.1.10083

Abstract

The fact that microRNAs play an important role in the development and pathogenesis of cardiovascular disease is beyond doubt. This article provides a brief overview of recent data that relate to microRNA expression in various cardiovascular diseases. Detecting significant changes in the level of expression of these molecules in various diseases means that microRNAs can be considered to be potential biomarkers of human pathologies including heart failure. Studying the relationship between the mechanisms of cardiovascular disease and the level of expression of a variety of microRNAs, as well as establishing their exact relationships with the genes is an urgent problem and requires further research.

About the Authors

V. V. Romakina
Institute of Cardiology of National Medical Research Center for Cardiology
Russian Federation


Igor V. Zhirov
Institute of Cardiology of National Medical Research Center for Cardiology
Russian Federation


S. N. Nasonova
Institute of Cardiology of National Medical Research Center for Cardiology
Russian Federation


A. V. Zaseeva
Institute of Cardiology of National Medical Research Center for Cardiology
Russian Federation


A. G. Kochetov
Institute of Cardiology of National Medical Research Center for Cardiology; Peoples Friendship University of Russia (RUDN University)
Russian Federation


O. V. Liang
Peoples Friendship University of Russia (RUDN University)
Russian Federation


S. N. Tereshchenko
Institute of Cardiology of National Medical Research Center for Cardiology; Medical Academy of Continuing Education Russian Medical Academy of Postgraduate Education
Russian Federation


References

1. Mishra P. J., Bertino J. R. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 2009; 10 (3): 399-416. DOI: 10.2217/14622416.10.3.399

2. Kukreja R. C., Yin C., Salloum F. N. MicroRNAs: New Players in Cardiac Injury and Protection. Mol Pharmacol 2011; 80 (4): 558-564. DOI: 10.1124/mol.111.073528

3. Meola N., Gennarino V. A., Banfi S. MicroRNAs and genetic diseases. PathoGenetics 2009; 2 (1): 7. DOI: 10.1186/1755-8417-2-7

4. Zhao Y., Ransom J. F., Li A. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129 (2): 303-317. DOI: 10.1016/j.cell.2007.03.030

5. Cakmak H., Coskunpinar E., Ikitimur B. et al. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown) 2015; 16: 431-437 DOI: 10.2459/JCM.0000000000000233

6. Sucharov C., Bristow M. R., Port J. D. miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 2008; 45 (2): 185-192. DOI: 10.1016/j.yjmcc.2008.04.014

7. van Rooij E., Sutherland L. B., Liu N. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006; 103 (48): 18255-18260. DOI: 10.1073/pnas.0608791103

8. Dirkx E., Gladka M. M., Philippen L. E. et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 2013; 15 (11): 1282-1293. DOI: 10.1038/ncb2866.

9. Wahlquist C., Jeong D., Rojas-Munoz A. et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508 (7497): 531-535. DOI: 10.1038/nature13073

10. Potus F., Ruffenach G., Dahou A. et al. Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension. irculation 2015; 132 (10): 932-943. DOI: 10.1161/CIRCULATIONAHA.115.016382

11. Paulin R., Sutendra G., Gurtu V. et al. A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension. Circ Res 2015; 116 (1): 56-69. DOI: 10.1161/CIRCRESAHA.115.303910.

12. Akat K. M., Moore-McGriff D., Morozov P. et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci USA 2014; 111 (30): 11151-11156. DOI: 10.1073/pnas.1401724111

13. Tijsen A.J., Creemers E. E., Moerland P. D. et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010; 106 (6): 1035-1039. DOI: 10.1161/CIRCRESAHA.110.218297.

14. Goren Y., Kushnir M., Zafrir B. et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 2012; 14 (2): 147-154. DOI: 10.1093/eurjhf/hfr155.

15. Fukushima Y., Nakanishi M., Nonogi H. et al. Assessment of plasma miRNAs in congestive heart failure. Circ J 2011; 75 (2): 336-340.

16. Voellenkle C., van Rooij J., Cappuzzello C. et al. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 2010; 42 (3): 420-426. DOI: 10.1152/physiolgenomics.00211.2009.

17. Tutarel O., Dangwal S., Bretthauer J. et al. Circulating miR-423-5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Int J Cardiol 2013; 167 (1): 63-66. DOI: 10.1016/j.ijcard. 2011.11.082

18. Tijsen A.J., Creemers E. E., Moerland P. D. et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010; 106 (6): 1035-1039. doi: 10.1161/CIRCRESAHA.110.218297

19. Corsten M. F., Dennert R., Jochems S. et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 2010; 3 (6): 499-506. DOI: 10.1161/CIRCGENETICS.110.957415.

20. Adachi T., Nakanishi M., Otsuka Y. et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 2010; 56 (7): 1183-1185. DOI: 10.1373/clinchem.2010.144121.

21. Kochetov A. G., Lyang O. V., Gimadiev R. R. et al. Expression of circulating microRNA in chronic heart failure in patients with cardiovascular pathologies. Laboratory Services 2016; 1: 26-32. DOI: 10.17116/labs20165126-32

22. Ji R., Cheng Y., Yue J. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007; 100 (11): 1579-1588. DOI: 10.1161/CIRCRESAHA.106.141986

23. Suárez Y., Fernández-Hernando C., Pober J. S., Sessa W. C. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 2007; 100 (8): 1164-1173. DOI: 10.1161/01.RES.0000265065.26744.17

24. Cheng Y., Ji R., Yue J. et al. Micro RNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 2007; 170 (6): 1831-1840. DOI: 10.2353/ajpath.2007.061170

25. Roy S., Khanna S., Hussain S. R. et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009; 82 (1): 21-29. DOI: 10.1093/cvr/cvp015.

26. Ye X., Zhang H. M., Qiu Y. et al. Coxsackie virus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disc components. PLoS Pathog 2014; 10(4): e1004070. DOI: 10.1371/journal.ppat.1004070.

27. Zhirov I. V., Kochetov A. G., Zaseeva A. V. et al. MicroRNA in the diagnosis of chronic heart failure: state of the problem and the results of a pilot study. Systemic Hypertension 2016; 13 (1): 39-46.

28. Matkovich S., Van Booven D., Youker K. et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 2009; 119 (9): 1263-1271. http://dx.doi.org/10.1161 /CIRCULATIONAHA. 108.813576

29. Yaron G., Kushnir M., Zafrir B., Tabak S. Serum levels of microRNAs in patients with heart failure. EurJ Heart Fail 2012; 14: 147-154.

30. Callis T., Pandya K., Seok H. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Investig 2009; 119 (9): 2772-2786 http://dx.doi.org/10.1172/JCI36154

31. Mercola M., Colas A., Willems E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 2013; 112: 534-548. https://doi.org/10.1161/CIRCRESAHA.111.250266

32. Vogel B., Keller A., Frese K. et al. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur Heart J. 2013; 34 (36): 2812-2822 http://dx.doi.org/10.1093/eurheartj/eht256


Review

For citations:


Romakina V.V., Zhirov I.V., Nasonova S.N., Zaseeva A.V., Kochetov A.G., Liang O.V., Tereshchenko S.N. MicroRNAs as Biomarkers of Cardiovascular Diseases. Kardiologiia. 2018;58(1):66-71. (In Russ.) https://doi.org/10.18087/cardio.2018.1.10083

Views: 1476


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)