ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Soluble ST2 – as a biomarker, a tool for risk stratification and therapeutic target in patients with chronic heart failure

https://doi.org/10.18087/cardio.2020.2.n816

Abstract

This review focuses on possibilities of using soluble ST2 as a HF marker for diagnostics, stratification of risk of adverse events, and for evaluation of prognosis and treatment effectiveness in patients with CHF. Circulating biomarkers are an essential element of algorithms for diagnostics, stratification of risk, and evaluation of prognosis in patients with HF. The recognized “gold standard”, natriuretic peptides, has several well-known limitations, and multiple new candidate biomarkers have appeared in recent years. Soluble ST2, a marker of “mechanical myocardial stress”, is considered as one of the most promising new biomarkers. This review discusses possibilities of using it in clinical practice in CHF patients.

About the Authors

D. K. Kamardinov
Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
Russian Federation
Moscow


R. N. Songurov
Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
Russian Federation
Songurov Rashid, Moscow


V. I. Ioshina
Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
Russian Federation
Moscow


Yu. I. Buziashvili
Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
Russian Federation
Moscow


References

1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP et al. Heart Disease and Stroke Statistics–2019 Update: A Report from the American Heart Association. Circulation. 2019;139(10):e56–528. DOI: 10.1161/CIR.0000000000000659

2. Maggioni AP. Epidemiology of Heart Failure in Europe. Heart Failure Clinics. 2015;11(4):625–35. DOI: 10.1016/j.hfc.2015.07.015

3. Fomin I.V. Chronic heart failure in Russian Federation: what do we know and what to do. Russian journal of cardiology. 2016;8: 7–13. DOI: 10.15829/1560-4071-2016-8-7-13

4. Mareev V.Yu., Fomin I.V., Ageev F.T., Begrambekova Yu.L., Vasyuk Yu.A., Garganeeva A.A. et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated(ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58 (6S): 8–164. DOI: 10.18087/cardio.2475

5. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2016;37(27):2129–200. DOI: 10.1093/eurheartj/ehw128

6. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6): e137–61. DOI: 10.1161/CIR.0000000000000509

7. Boytsov S.A. Current state and unresolved issues in the concept of neurohumoral blockade in the treatment of chronic heart failure. Heart and vascular diseases. 2007;2 (1):42–53. http://old.consilium-medicum.com/media/bss/07_01/12.shtml

8. Buziashvili Yu.I., Matskeplishvili S.T., Ioshina V.I. Chronic heart failure in patients with coronary heart disease: strategic approaches to making the optimal clinical decision. – M.: NMRCCS them. A. N. Bakuleva RAMS;2015. –435 p. ISBN 978-5-7982-0343-7

9. Medvedeva E.A., Surkova E.A., Limareva L.V., Shchukin Yu.V. Molecular biomarkers for diagnostics, risk stratification and prediction of chronic heart failure. Russian Journal of Cardiology. 2016;21(8):86– 91. DOI: 10.15829/1560-4071-2016-8-86-91

10. McKie PM, Burnett JC. NT-proBNP: The Gold Standard Biomarker in Heart Failure. Journal of the American College of Cardiology. 2016;68(22):2437–9. DOI: 10.1016/j.jacc.2016.10.001

11. Maisel A, Mueller C, Adams K, Anker SD, Aspromonte N, Cleland JGF et al. State of the art: Using natriuretic peptide levels in clinical practice. European Journal of Heart Failure. 2008;10(9):824–39. DOI: 10.1016/j.ejheart.2008.07.014

12. Ibrahim NE, Januzzi JL. Beyond Natriuretic Peptides for Diagnosis and Management of Heart Failure. Clinical Chemistry. 2017;63(1):211–22. DOI: 10.1373/clinchem.2016.259564

13. Magnussen C, Blankenberg S. Biomarkers for heart failure: small molecules with high clinical relevance. Journal of Internal Medicine. 2018;283(6):530–43. DOI: 10.1111/joim.12756

14. Pascual-Figal DA, Ordoñez-Llanos J, Tornel PL, Vázquez R, Puig T, Valdés M et al. Soluble ST2 for Predicting Sudden Cardiac Death in Patients with Chronic Heart Failure and Left Ventricular Systolic Dysfunction. Journal of the American College of Cardiology. 2009;54(23):2174–9. DOI: 10.1016/j.jacc.2009.07.041

15. Dieplinger B, Januzzi JL, Steinmair M, Gabriel C, Poelz W, Haltmayer M et al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma – The PresageTM ST2 assay. Clinica Chimica Acta. 2009;409(1–2):33–40. DOI: 10.1016/j.cca.2009.08.01016.

16. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2013;62(16):e147-239. DOI: 10.1016/j.jacc.2013.05.019

17. Tominaga S. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS letters. 1989;258(2):301–4. DOI: 10.1016/0014-5793(89)81679-5

18. Kuroiwa K, Arai T, Okazaki H, Minota S, Tominaga S. Identification of Human ST2 Protein in the Sera of Patients with Autoimmune Diseases. Biochemical and Biophysical Research Communications. 2001;284(5):1104–8. DOI: 10.1006/bbrc.2001.5090

19. Kropf P, Bickle Q, Herath S, Klemenz R, Müller I. Organ-specific distribution of CD4+ T1/ST2+ Th2 cells in Leishmania major infection. European Journal of Immunology. 2002;32(9):2450– 9. DOI: 10.1002/1521-4141(200209)32:9<2450::AID-IMMU2450>3.0.CO;2-O

20. Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. Expression and function of the ST2 gene in a murine model of allergic airway inflammation. Clinical Experimental Allergy. 2002;32(10):1520–6. DOI: 10.1046/j.1365-2745.2002.01494.x

21. Brunner M, Krenn C, Roth G, Moser B, Dworschak M, Jensen-Jarolim E et al. Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Medicine. 2004;30(7):1468–1473. DOI: 10.1007/s00134-004-2184-x

22. Trajkovic V, Sweet MJ, Xu D. T1/ST2—an IL-1 receptor-like modulator of immune responses. Cytokine & Growth Factor Reviews. 2004;15(2–3):87–95. DOI: 10.1016/j.cytogfr.2004.02.004

23. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6. DOI: 10.1161/01.cir.0000038705.69871.d9

24. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau J-L, Lee RT. Identification of Serum Soluble ST2 Receptor as a Novel Heart Failure Biomarker. Circulation. 2003;107(5):721–6. DOI: 10.1161/01.CIR.0000047274.66749.FE

25. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL-33, an Interleukin-1-like Cytokine that Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity. 2005;23(5):479–90. DOI: 10.1016/j.immu-ni.2005.09.015

26. Dinarello CA. The IL-1 family and inflammatory diseases. Clinical and Experimental Rheumatology. 2002;20(5 Suppl 27):S1-13. PMID: 14989423

27. Iwahana H, Yanagisawa K, Ito-Kosaka A, Kuroiwa K, Tago K, Komatsu N et al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. European Journal of Biochemistry. 1999;264(2):397–406. DOI: 10.1046/j.14321327.1999.00615.x

28. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. Journal of Clinical Investigation. 2007;117(6):1538–49. DOI: 10.1172/JCI30634

29. Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon; J et al. Interleukin-33 Prevents Apoptosis and Improves Survival After Experimental Myocardial Infarction Through ST2 Signaling. Circulation: Heart Failure. 2009;2(6):684–91. DOI: 10.1161/CIRCHEARTFAILURE.109.873240

30. Mueller T, Dieplinger B. Soluble ST2 and Galectin-3: What We Know and Don’t Know Analytically. EJIFCC. 2016;27(3):224–37. PMID: 27683536

31. Ho LH, Ohno T, Oboki K, Kajiwara N, Suto H, Iikura M et al. IL-33 induces IL-13 production by mouse mast cells independently of IgEFc RI signals. Journal of Leukocyte Biology. 2007;82(6):1481–90. DOI: 10.1189/jlb.0407200

32. Yucel O, Gul I, Zararsiz A, Demirpence O, Yucel H, Cinar Z et al. Association of soluble ST2 with functional capacity in outpatients with heart failure. Herz. 2018;43(5):455–60. DOI: 10.1007/s00059-017-4590-1

33. deFilippi C, Daniels LB, Bayes-Genis A. Structural Heart Disease and ST2: Cross-Sectional and Longitudinal Associations with Echocardiography. The American Journal of Cardiology. 2015;115(7):59B63B. DOI: 10.1016/j.amjcard.2015.01.042

34. Gaggin HK, Szymonifka J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S et al. Head-to-Head Comparison of Serial Soluble ST2, Growth Differentiation Factor-15, and Highly-Sensitive Troponin T Measurements in Patients With Chronic Heart Failure. JACC: Heart Failure. 2014;2(1):65–72. DOI: 10.1016/j.jchf.2013.10.005

35. Belyalov F.I. Medical scores in clinical practice. Part III. Heart Failure. Clinical Medicine. 2017;95(1):72–7.

36. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J et al. Risk Prediction in Patients With Heart FailureRisk prediction in patients with heart failure: a systematic review and analysis. JACC: Heart Failure. 2014;2(5):440–6. DOI: 10.1016/j.jchf.2014.04.008

37. Krasnova O.A., Sitnikova M.Yu., Ivanov S.G., Fedotov P.A. Effectiveness of the seattle heart failure model in predicting the long-term prognosis among men with coronary heart disease. Russian Journal of Cardiology. 2012;5:58–62.

38. Dyleva Yu.A., Gruzdeva O.V., Akbasheva O.E., Uchasova E.G., Barbarash O.L. The physiologic and pathophysiologic role of stimulating growth factor ST2. Russian Clinical Laboratory Diagnostics. 2017;62 (10):599–605.

39. Kopeva K.V., Grakova E.V., Teplyakov A.T. New biomarkers of heart failure: diagnostic and prognostic value of NT-proBNP and interleukin receptor family member ST2. Complex Issues of Cardiovascular Diseases. 2018;7(1):94–101. DOI: 10.17802/2306-1278-2018-7-1-94-101

40. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P et al. High-Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure. Circulation: Heart Failure. 2011;4(2):180–7. DOI: 10.1161/CIRCHEARTFAILURE.110.958223

41. Bayes-Genis A, de Antonio M, Galán A, Sanz H, Urrutia A, Cabanes R et al. Combined use of high-sensitivity ST2 and NT-proBNP to improve the prediction of death in heart failure. European Journal of Heart Failure. 2012;14(1):32–8. DOI: 10.1093/eurjhf/hfr156

42. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. European Journal of Heart Failure. 2012;14(3):268–77. DOI: 10.1093/eurjhf/hfs006

43. Felker GM, Fiuzat M, Thompson V, Shaw LK, Neely ML, Adams KF et al. Soluble ST2 in Ambulatory Patients with Heart Failure: Association With Functional Capacity and Long-Term Outcomes. Circulation: Heart Failure. 2013;6(6):1172–9. DOI: 10.1161/CIRCHEARTFAILURE.113.000207

44. Lu J, Snider JV, Grenache DG. Establishment of reference intervals for soluble ST2 from a United States population. Clinica Chimica Acta. 2010;411(21–22):1825–6. DOI: 10.1016/j.cca.2010.07.014

45. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic Value of Soluble ST2 in the Valsartan Heart Failure Trial. Circulation: Heart Failure. 2014;7(3):418–26. DOI: 10.1161/CIRCHEART-FAILURE.113.00103646.

46. Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL et al. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure. JACC: Heart Failure. 2017;5(4):280–6. DOI: 10.1016/j.jchf.2016.09.010

47. Emdin M, Aimo A, Vergaro G, Bayes-Genis A, Lupón J, Latini R et al. sST2 Predicts Outcome in Chronic Heart Failure Beyond NTproBNP and High-Sensitivity Troponin T. Journal of the American College of Cardiology. 2018;72(19):2309–20. DOI: 10.1016/j.jacc.2018.08.2165

48. Skali H, Gerwien R, Meyer TE, Snider JV, Solomon SD, Stolen CM. Soluble ST2 and Risk of Arrhythmias, Heart Failure, or Death in Patients with Mildly Symptomatic Heart Failure: Results from MADITCRT. Journal of Cardiovascular Translational Research. 2016;9(5– 6):421–8. DOI: 10.1007/s12265-016-9713-1

49. Teplyakov A.T., Tarasov N.I., Isakov L.K., Grakova E.V., Sinkova M.N., Kopieva K.V. et al. Prognosis of cardiovascular events after implantation of a cardioverterdefibrillator in patients with chronic heart failure: the value of increasing concentration of endothelin-1 and soluble forms of ST2 protein in blood plasma. Bulletin of Siberian Medicine. 2018;17 (3):140–50. DOI: 10.20538/1682-0363-2018-3-140-150

50. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J et al. Serial Sampling of ST2 Predicts 90-Day Mortality Following Destabilized Heart Failure. Journal of Cardiac Failure. 2008;14(9):732–8. DOI: 10.1016/j.cardfail.2008.06.415

51. Bahuleyan CG, Alummoottil GK, Abdullakutty J, Lordson AJ, Babu S, Krishnakumar VV et al. Prognostic value of soluble ST2 biomarker in heart failure patients with reduced ejection fraction – A multicenter study. Indian Heart Journal. 2018;70(Suppl 1):S79–84. DOI: 10.1016/j.ihj.2017.09.010

52. Skvortsov A.A., Protasov V.N., Narusov O.Yu., Koshkina D.E., Osmolovskaya Yu.F., Kuznetsova T.V. et al. Head to Head Comparison of Suppression of Tumorogenicity 2 and Copeptin Significance for Prognosis of Patients After Acute Heart Failure Decompensation. Kardiologiia. 2017;17 (9):20–33. DOI: 10.18087/cardio.2017.9.10028

53. Skvortsov A. A., Narusov O. Yu., Muksinova M. D., Protasov V. N., Protasova D. E., Kuznetsova T. V. et al. Clinical significance of serial biomarkers activity determination after acute heart failure decompensation: sST2 NT-proBNP role during long-term follow-up. Kardiologiia. 2018;58 (12S): 27–41. DOI: 10.18087/cardio.2634

54. Protasov V. N., Narusov O. Yu., Skvortsov A. A., Protasova D. E., Kuznetsova T. V., Petrukhina A. A. et al. Multimarker Approach in Risk Stratification of Patients with Decompensated Heart Failure. Kardiologiia. 2019;59 (1S): 53–64. DOI: 10.18087/cardio.2637

55. Grakova E.V., Kopieva K.V., Teplyakov A.T., Ogurkova O.N., Soldatenko M.V., Garganeeva A.A. Clinical use of the new biomarker ST2 in patients with chronic heart failure of ischemic genesis: an exercise test. Cardiovascular Therapy and Prevention. 2019;18 (4):12–8. DOI: 10.15829/1728-8800-2019-4-12-18

56. Lee DS. Risk-Treatment Mismatch in the Pharmacotherapy of Heart Failure. JAMA. 2005;294(10):1240. DOI: 10.1001/ja-ma.294.10.1240

57. Fonarow GC, Albert NM, Curtis AB, Stough WG, Gheorghiade M, Heywood JT et al. Improving Evidence-Based Care for Heart Failure in Outpatient Cardiology Practices: Primary Results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Circulation. 2010;122(6):585– 96. DOI: 10.1161/CIRCULATIONAHA.109.934471

58. Greene SJ, Butler J, Albert NM, DeVore AD, Sharma PP, Duffy CI et al. Medical Therapy for Heart Failure With Reduced Ejection Fraction. Journal of the American College of Cardiology. 2018;72(4):351–66. DOI: 10.1016/j.jacc.2018.04.070

59. Bozkurt B. Reasons for Lack of Improvement in Treatment with Evidence-Based Therapies in Heart Failure. Journal of the American College of Cardiology. 2019;73(19):2384–7. DOI: 10.1016/j.jacc.2019.03.464

60. Anand IS, Fisher LD, Chiang Y-T, Latini R, Masson S, Maggioni AP et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003;107(9):1278–83. DOI: 10.1161/01.cir.0000054164.99881.00

61. Hartmann F, Packer M, Coats AJS, Fowler MB, Krum H, Mohacsi P et al. Prognostic Impact of Plasma N-Terminal Pro–Brain Natriuretic Peptide in Severe Chronic Congestive Heart Failure: A Substudy of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Trial. Circulation. 2004;110(13):1780–6. DOI: 10.1161/01.CIR.0000143059.68996.A7

62. Cleland JGF, McMurray JJV, Kjekshus J, Cornel JH, Dunselman P, Fonseca C et al. Plasma Concentration of Amino-Terminal Pro-Brain Natriuretic Peptide in Chronic Heart Failure: Prediction of Cardiovascular Events and Interaction with the Effects of Rosuvastatin. Journal of the American College of Cardiology. 2009;54(20):1850–9. DOI: 10.1016/j.jacc.2009.06.041

63. Frantz RP, Olson LJ, Grill D, Moualla SK, Nelson SM, Nobrega TP et al. Carvedilol therapy is associated with a sustained decline in brain natriuretic peptide levels in patients with congestive heart failure. American Heart Journal. 2005;149(3):541–7. DOI: 10.1016/j.ahj.2004.07.036

64. Masson S, Latini R, Anand IS, Barlera S, Angelici L, Vago T et al. Prognostic Value of Changes in N-Terminal Pro-Brain Natriuretic Peptide in Val-HeFT (Valsartan Heart Failure Trial). Journal of the American College of Cardiology. 2008;52(12):997–1003. DOI: 10.1016/j.jacc.2008.04.069

65. Zile MR, Claggett BL, Prescott MF, McMurray JJV, Packer M, Rouleau JL et al. Prognostic Implications of Changes in N-Terminal ProB-Type Natriuretic Peptide in Patients with Heart Failure. Journal of the American College of Cardiology. 2016;68(22):2425–36. DOI: 10.1016/j.jacc.2016.09.931

66. Troughton RW, Frampton CM, Yandle TG, Espine EA, Nicholls MG, Richards AM. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. The Lancet. 2000;355(9210):1126–30. DOI: 10.1016/S0140-6736(00)02060-2

67. Lainchbury JG, Troughton RW, Strangman KM, Frampton CM, Pilbrow A, Yandle TG et al. N-Terminal Pro–B-Type Natriuretic Peptide-Guided Treatment for Chronic Heart Failure. Journal of the American College of Cardiology. 2009;55(1):53–60. DOI: 10.1016/j.jacc.2009.02.09568.

68. Pfisterer M, Buser P, Rickli H, Gutmann M, Erne P, Rickenbacher P et al. BNP-Guided vs Symptom-Guided Heart Failure Therapy: The Trial of Intensified vs Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF) Randomized Trial. JAMA. 2009;301(4):383–92. DOI: 10.1001/jama.2009.2

69. Berger R, Moertl D, Peter S, Ahmadi R, Huelsmann M, Yamuti S et al. N-Terminal Pro–B-Type Natriuretic Peptide–Guided, Intensive Patient Management in Addition to Multidisciplinary Care in Chronic Heart Failure. Journal of the American College of Cardiology. 2010;55(7):645–53. DOI: 10.1016/j.jacc.2009.08.078

70. Eurlings LWM, van Pol PEJ, Kok WE, van Wijk S, Lodewijks-van der Bolt C, Balk AHMM et al. Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. Journal of the American College of Cardiology. 2010;56(25):2090–100. DOI: 10.1016/j.jacc.2010.07.030

71. Januzzi JL, Rehman SU, Mohammed AA, Bhardwaj A, Barajas L, Barajas J et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. Journal of the American College of Cardiology. 2011;58(18):1881–9. DOI: 10.1016/j.jacc.2011.03.072

72. Felker GM, Hasselblad V, Hernandez AF, O’Connor CM. Biomarker-guided therapy in chronic heart failure: A meta-analysis of randomized controlled trials. American Heart Journal. 2009;158(3):422– 30. DOI: 10.1016/j.ahj.2009.06.018

73. Porapakkham P. B-Type Natriuretic Peptide–Guided Heart Failure Therapy: A Meta-analysis. Archives of Internal Medicine. 2010;170(6):507–14. DOI: 10.1001/archinternmed.2010.35

74. Troughton RW, Frampton CM, Brunner-La Rocca H-P, Pfisterer M, Eurlings LWM, Erntell H et al. Effect of B-type natriuretic peptideguided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. European Heart Journal. 2014;35(23):1559–67. DOI: 10.1093/eurheartj/ehu090

75. Felker GM, Ahmad T, Anstrom KJ, Adams KF, Cooper LS, Ezekowitz JA et al. Rationale and Design of the GUIDE-IT Study: Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure. JACC: Heart Failure. 2014;2(5):457–65. DOI: 10.1016/j.jchf.2014.05.007

76. Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, Houston-Miller N et al. Effect of Natriuretic Peptide–Guided Therapy on Hospitalization or Cardiovascular Mortality in High-Risk Patients with Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2017;318(8):713–20. DOI: 10.1001/ja-ma.2017.10565

77. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi JL. Soluble Concentrations of the Interleukin Receptor Family Member ST2 and β-Blocker Therapy in Chronic Heart Failure. Circulation: Heart Failure. 2013;6(6):1206–13. DOI: 10.1161/CIRCHEARTFAILURE.113.000457

78. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al. Angiotensin–niprilysin Inhibition versus enalapril in heart failure. New England Journal of Medicine. 2014;371(11):993–1004. DOI: 10.1056/NEJMoa1409077

79. O’Meara E, Prescott MF, Claggett B, Rouleau JL, Chiang L-M, Solomon SD et al. Independent Prognostic Value of Serum Soluble ST2 Measurements in Patients With Heart Failure and a Reduced Ejection Fraction in the PARADIGM-HF Trial (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure). Circulation: Heart Failure. 2018;11(5):e004446. DOI: 10.1161/CIRCHEARTFAILURE.117.004446

80. Zile MR, O’Meara E, Claggett B, Prescott MF, Solomon SD, Swedberg K et al. Effects of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients with HFrEF. Journal of the American College of Cardiology. 2019;73(7):795–806. DOI: 10.1016/j.jacc.2018.11.042


Review

For citations:


Kamardinov D.K., Songurov R.N., Ioshina V.I., Buziashvili Yu.I. Soluble ST2 – as a biomarker, a tool for risk stratification and therapeutic target in patients with chronic heart failure. Kardiologiia. 2020;60(2):111-121. https://doi.org/10.18087/cardio.2020.2.n816

Views: 2262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)