ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Phenomenological Regularities of Assessment of Left Ventricle Function in Mitral Valve Insufficiency

https://doi.org/10.18087/cardio.2018.1.10074

Abstract

Objective: to examine relationship between anatomical changes of the left ventricle (LV), dynamics of velocity of its volume modification, and blood flows in the LV in patients with mitral regurgitation (MR) before and after surgical treatment. Materials and methods. We included into this study 58 patients with severe 3-4 degree MR (38 men, 20 women aged 24-69 [mean age 51±9] years) in sinus rhythm (96%) or atrial fibrillation (4%). The control group included 86 healthy volunteers, mean age 39±7 years. Transthoracic echocardiographic studies were performed in both groups by standard technique at rest using a high-quality echocardiograph Vivid E9, equipped with a 3.5-4.6 MHz multi frequency transducer (in patients before and after surgical repair - mitral valve [MV] replacement and MV reconstruction with annuloplasty ring). The analysis of files recorded was performed off-line by vector analysis technique including estimation of myocardial deformation velocities and dynamics of LV volume modification, construction of “flow-volume” diagram, calculation of the expended kinetic energy, and registration of intraventricular blood flows. Results. End diastolic volume (EDV), end systolic volume (ESV) and total stroke volume (TSV) (effective + retrograde) were significantly increased in patients with severe LV volume overload before surgery in comparison with the control group (p<0.001). After MV replacement EDV decreased from 157 to 101 ml, which averaged 36% of the initial value. TSV before surgery was about 106 ml, after surgery it decreased 43% down to 61±12 ml. Vector analysis technique and diagram method showed that velocities of LV volume modification and sum of normal velocities both in systole and diastole were significantly higher in patients with MR before surgery compared with the control group; with this the velocity of modification of LV length (dL/dt[s]) in systole and diastole did not differ from values in the control group. The ratio of the velocity amount (Σ Vη) - diastole to systole ratio - differed from values in the control group by 13-15%. Kinetic energy loss (Ekin) in patients with MR before surgery was several times higher in diastole than in systole. After MV replacement Ekin in systole and diastole decreased becoming closer to normal values. MV replacement restored the pattern of LV filling from the left atrium, and the blood flow reached the LV apex virtually without energy loss. Conclusions. Thus, myocardial deformation velocities, LV blood flows allow to quantify cardiac function in patients with MV insufficiency and to assess the effectiveness of surgical treatment in the early and remote postoperative periods. Phenomenological patterns in evaluation of LV myocardial function and valve apparatus are based not only on anatomical changes of heart chambers, but also on the dynamics of myocardial deformation velocities, what allows to get closer to a assessment of global cardiac function, taking into consideration blood flow dynamics and turbulence in the ventricles, characterizing the cardiac performance and particularly the kinetic energy of the myocardium. Evaluation of stagnant areas in the LV based on the velocity of intracardiac blood flow, reconstructed from color Doppler mapping can be used as a method to identify topological structures with the assessment of qualitative and quantitative characteristics of the myocardium and valve apparatus.

About the Authors

V. A. Sandrikov
Federal State Budgetary Scientific Institution “Petrovsky national research centre of surgery”
Russian Federation


Tatiana Yu. Kulagina
Federal State Budgetary Scientific Institution “Petrovsky national research centre of surgery”
Russian Federation


V. A. Ivanov
Federal State Budgetary Scientific Institution “Petrovsky national research centre of surgery”
Russian Federation


A. S. Krylov
Federal State Budget Educational Institution of Higher Education “M.V. Lomonosov Moscow State University”
Russian Federation


A. M. Yatchenko
Federal State Budget Educational Institution of Higher Education “M.V. Lomonosov Moscow State University”
Russian Federation


D. R. Khadzhieva
Federal State Budgetary Scientific Institution “Petrovsky national research centre of surgery”
Russian Federation


A. V. Tsyganov
Federal State Budgetary Scientific Institution “Petrovsky national research centre of surgery”
Russian Federation


A. V. Gavrilov
Federal State Budget Educational Institution of Higher Education “M.V. Lomonosov Moscow State University”
Russian Federation


I. V. Arkhipov
Federal State Budgetary Scientific Institution “Petrovsky national research centre of surgery”
Russian Federation


References

1. Бокерия Л. А., Скопин И. И., Мироненко В. А. и др. Дилатация левого желудочка при клапанных пороках сердца. Вопросы нозологии. Бюл НЦССХ им. А. Н. Бакулева РАМН 2005; 6 (6): 5-8. eLIBRARY. RU: 12853613.

2. Seo J. H., Mittal R. Effect of diastolic flow patterns on the function of the left ventricle. Physics of Fluids 25, 110801 (2013); doi: http://dx.doi.org/10.1063/1.4819067

3. Беленков Ю.Н., Привалова Е. В., Данилогорская Ю. А. и др. Влияние 12-месячной терапии периндоприлом А. на структурно-функциональное состояние микроциркуляторного русла у пациентов с хронической сердечной недостаточностью. Кардиология 2015; 55; 12: 5-10

4. Sengupta P. P., Pedrizzetti G., Narula J. Multiplanar visualization of blood flow using echocardiographic Particle Imaging Velocimetry. J. Am Coll Cardiol Imag 2012; 5: 566-569.

5. Сандриков В. А., Кулагина Т. Ю., Дземешкевич С. Л. и др. Неинвазивная регистрация турбулентных потоков в левом желудочке. Хирургия 2013; 2: 45-48

6. Tanaka M., Sakamoto T., Sugawara S., Nakajima H. Blood flow structure and dynamics, and ejection mechanism in the left ventricle: Analysis using echodynamography. J. Cardiol 2008; 52: 86-101.

7. Кулагина Т. Ю., Ван Е. Ю., Березина Е. В., Сандриков В. А. Стресс-тесты в оценке адаптации к гипоксии больных с хронической сердечной недостаточностью. Патогенез 2011; 3: 41

8. Ghosh E., Kova S.J. The vortex formation time to diastolic function relation: assessment of pseudonormalized vs. normal filling. Physiol Rep, 1 (6), 2013, e00170, doi: 10.1002/phy2.170.

9. Yatchenko A. M., Krylov A. S., Sandrikov V. A., Kulagina T. Yu. Regularizing method for phase antialiasing in color doppler flow mapping. Neurocomputing 2014 Elsevier BV, том 139, с. 77-83 http://dx.doi.org/10.1016/j.neucom. 2013.09.060i.

10. Hendabadi S., Bermejo J., Benito Y. et al. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann Biomed Eng 2013; 41: 2603-2616.

11. Gharib M., Rambod E., Kheradvar A. et al. Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci USA 2006; 103: 6305-6308.

12. Ebbers T., Frazer A., Tonti G., Narula J. Emerging trends in clinical assessment of cardiovascular fluid dynamics. J. Am Coll Cardiol Img 2012; 5: 305-316.


Review

For citations:


Sandrikov V.A., Kulagina T.Yu., Ivanov V.A., Krylov A.S., Yatchenko A.M., Khadzhieva D.R., Tsyganov A.V., Gavrilov A.V., Arkhipov I.V. Phenomenological Regularities of Assessment of Left Ventricle Function in Mitral Valve Insufficiency. Kardiologiia. 2018;58(1):32-40. (In Russ.) https://doi.org/10.18087/cardio.2018.1.10074

Views: 1070


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)