Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men
https://doi.org/10.18087/cardio.2598
Abstract
The aim of research. To study the association of polymorphic loci of matrix metalloproteinases with the development of essential hypertension (EH) in men of the Central Chernozem Region of Russia. Materials and methods. A study of 564 men with EH and 257 control men was performed. Analysis of the polymorphic loci of metalloproteinases rs11568818 MMР7, rs1320632 MMР8, rs11225395 MMР8, rs1799750 MMР1, rs3025058 MMР3 was performed using real-time PCR. The study of associations of SNPs and their haplotypes with the development of arterial hypertension was carried out using logistic regression analysis in the PLINK software (v. 2.050).
The regulatory potential of polymorphic loci was analyzed in the HaploReg software (v. 4.1) (http://archive.broadinstitute.org). The effect of SNP on gene expression was studied using the data of the Genotype-Tissue Expression project (http://www.gtexportal.org/). Results. Haplotype including rs11568818 MMP7, rs1320632 MMP8, rs11225395 MMP8 and rs1799750 MMP1 associated with a high risk of disease in men (OR=2,58, pperm=0,04). These polymorphisms located in region of promoter and enhancer histone marks and in the region of hypersensitivity to DNAse-1. They located in sites of proteins bound (TBP, CJUN, CFOS and GATA2) and they associated with the level of gene expression ММР7, ММР27 and RP11-817J15.3 (in peripheral blood, skeletal muscles, nervous tissue and other). Сonclusion. Haplotype G-A-C-1G for polymorphisms rs11568818 MMP7, rs1320632 MMP8, rs11225395 MMP8, rs1799750 MMP1 are associated with the development of essential hypertension in men in the Central Chernozem Region of Russia.
About the Authors
M. I. MoskalenkoRussian Federation
Pobedy 85, Belgorod 308015
S. N. Milanova
Russian Federation
Pobedy 85, Belgorod 308015
I. V. Ponomarenko
Russian Federation
Pobedy 85, Belgorod 308015
A. V. Polonikov
Russian Federation
K. Marx st. 3, Kursk 305041
M. I. Churnosov
Russian Federation
Pobedy 85, Belgorod 308015
References
1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: ESC/ESH Task Force for the Management of Arterial Hypertension. Journal of Hypertension. 2018;36(12):2284–309. DOI: 10.1097/HJH.0000000000001961
2. Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. The Lancet. 2017;389(10064):37–55. DOI: 10.1016/S0140-6736(16)31919-5
3. Quan H, Chen G, Walker RL, Wielgosz A, Dai S, Tu K et al. Incidence, cardiovascular complications and mortality of hypertension by sex and ethnicity. Heart. 2013;99(10):715–21. DOI: 10.1136/heartjnl-2012-303152
4. Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling. Mediators of Inflammation. 2013;2013:1–14. DOI: 10.1155/2013/928315
5. Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Critical Reviews in Biochemistry and Molecular Biology. 2007;42(3):113–85. DOI: 10.1080/10409230701340019
6. Moskalenko M.I. The involvement of genes of matrix metalloproteinases in the development of arterial hypertension and its complication (review). Research Result. Medicine and Pharmacy. 2018;4(1):53–69. [Russian: Москаленко М.И. Вовлеченность генов матриксных металлопротеиназ в формирование артериальной гипертензии и ее осложнений (обзор). Научный результат. Медицина и фармация. 2018;4(1):53–69]. DOI: 10.18413/2313-8955-2018-4-1-53-69
7. Rudyh N.A., Sirotina S.S. Genetic interrelations of Russian and Ukrainian populations of Belgorod region. Research Result. Medicine and Pharmacy. 2015;1 (3):72–9. [Russian: Рудых Н. А., Сиротина С.С. Генетические соотношения русских и украинских популяций Белгородской области. Научный результат. Медицина и Фармация. 2015;1(3):72–9]. DOI: 10.18413/2313-8955-2015-1-3-72-79
8. Sorokina I.N., Rudykh N.A., Bezmenova I.N., Polyakova I.S. Population genetic characteristics and genetic epidemiological research of candidate genes associations with multifactorial diseases. Research Results in Biomedicine. 2018;4(4):20–30. [Russian: Сорокина И.Н., Рудых Н.А., Безменова И.Н., Полякова И.С. Популяционно-генетические характеристики и генетико-эпидемиологическое исследование ассоциаций генов-кандидатов с мультифакториальными заболеваниями. Научные результаты биомедицинских исследований. 2018;4(4):20–30]. DOI: 10.18413/2313-8955-2018-4-4-0-3
9. Britov A. N., Pozdnyakov Yu. M., Volkova E. G., Drapkina O. M., Еганян Р. А., Kislyak O. A. et al. National recommendations of cardiovascular prevention. Cardiovascular Therapy and Prevention. 2011;10 (6 S2):2–64. [Russian: Бритов А. Н., Поздняков Ю. М., Волкова Э. Г., Драпкина О. М., Еганян Р. А., Кисляк О. М. и др. Национальные рекомендации по кардиоваскулярной профилактике. Кардиоваскулярная терапия и профилактика. 2011;10(6 S2):2-64]
10. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M et al. Definitions and Diagnosis of Pulmonary Hypertension. Journal of the American College of Cardiology. 2013;62(25):D42–50. DOI: 10.1016/j.jacc.2013.10.032
11. Ponomarenko I.V. Selection of polymorphic loci for association analysis in genetic-epidemiological studies. Research Result. Medicine and Pharmacy. 2018;4(2):40–54. [Russian: Пономаренко И.В. Отбор полиморфных локусов для анализа ассоциаций при генетико-эпидемиологических исследованиях. Научный результат. Медицина и фармация. 2018;4(2):40–54]. DOI: 10.18413/2313-8955-2018-4-2-0-5
12. Pradhan-Palikhe P, Pussinen PJ, Vikatmaa P, Palikhe A, Kivimäki AS, Lepäntalo M et al. Single nucleotide polymorphism – 799C/T in matrix metalloproteinase-8 promoter region in arterial disease. Innate Immunity. 2012;18(3):511–7. DOI: 10.1177/1753425911423852
13. Lièvre A, Milet J, Carayol J, Le Corre D, Milan C, Pariente A et al. Genetic polymorphisms of MMP1, MMP3 and MMP7gene promoter and risk of colorectal adenoma. BMC Cancer. 2006;6(1):270. DOI: 10.1186/1471-2407-6-270
14. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Research. 2016;44(D1):D877–81. DOI: 10.1093/nar/gkv1340
15. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13. DOI: 10.1038/nature24277
16. Hu W, Ye Y, Yin Y, Sang P, Li L, Wang J et al. Association of matrix metalloprotease 1, 3, and 12 polymorphisms with rheumatic heart disease in a Chinese Han population. BMC Medical Genetics. 2018;19(1):27. DOI: 10.1186/s12881-018-0538-4
17. Beilby JP, Chapman CML, Palmer LJ, McQuillan BM, Thompson PL, Hung J. Stromelysin-1 (MMP3) gene 5A/6A promoter polymorphism is associated with blood pressure in a community population. Journal of Hypertension. 2005;23(3):537–42. PMID: 15716694
18. Sakowicz A, Fendler W, Lelonek M, Sakowicz B, Pietrucha T. Genetic Polymorphisms and the Risk of Myocardial Infarction in Patients Under 45 Years of Age. Biochemical Genetics. 2013;51(3–4):230–42. DOI: 10.1007/s10528-012-9558-5
19. Jormsjö S, Whatling C, Walter DH, Zeiher AM, Hamsten A, Eriksson P. Allele-Specific Regulation of Matrix Metalloproteinase-7 Promoter Activity Is Associated with Coronary Artery Luminal Dimensions Among Hypercholesterolemic Patients. Arteriosclerosis, Thrombosis, and Vascular Biology. 2001;21(11):1834–9. DOI: 10.1161/hq1101.098229
20. Mishra A, Srivastava A, Mittal T, Garg N, Mittal B. Association of matrix metalloproteinases (MMP2, MMP7 and MMP9) genetic variants with left ventricular dysfunction in coronary artery disease patients. Clinica Chimica Acta. 2012;413(19–20):1668–74. DOI: 10.1016/j.cca.2012.05.012
21. Mallat Z. Matrix Metalloproteinase-8 and the Regulation of Blood Pressure, Vascular Inflammation, and Atherosclerotic Lesion Growth. Circulation Research. 2009;105(9):827–9. DOI: 10.1161/CIRCRESAHA.109.208595
22. Hoseini SM, Kalantari A, Afarideh M, Noshad S, Behdadnia A, Nakhjavani M et al. Evaluation of plasma MMP8, MMP9 and TIMP1 identifies candidate cardiometabolic risk marker in metabolic syndrome: results from double-blinded nested case–control study. Metabolism. 2015;64(4):527–38. DOI: 10.1016/j.metabol.2014.12.009
23. Lin T-H, Yang S-F, Chiu C-C, Su H-M, Wang C-L, Voon W-C et al. Matrix metalloproteinase-1 mitral expression and – 1607 1G/2G gene promoter polymorphism in mitral chordae tendinae rupture. Translational Research. 2013;161(5):406–13. DOI: 10.1016/j.trsl.2012.10.002
24. Zhang G, Li W, Guo Y, Li D, Liu Y, Xu S. MMP Gene Polymorphisms, MMP1 -1607 1G/2G, -519 A/G, and MMP12 -82 A/G, and Ischemic Stroke: A Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases. 2018;27(1):140–52. DOI: 10.1016/j.jstrokecerebrovasdis.2017.08.021
25. Velho FM, Cohen CR, Santos KG, Silvello D, Martinelli N, Biolo A et al. Polymorphisms of Matrix Metalloproteinases in Systolic Heart Failure: Role on Disease Susceptibility, Phenotypic Characteristics, and Prognosis. Journal of Cardiac Failure. 2011;17(2):115–21. DOI: 10.1016/j.cardfail.2010.09.017
26. Djurić T, Živković M, Stanković A, Mečanin S, Alavantić D. Endothelial NOS G894 T and MMP3 5A/6A gene polymorphisms and hypertension in Serbian population. Journal of Clinical Laboratory Analysis. 2005;19(6):241–6. DOI: 10.1002/jcla.20085
27. Giannakos E, Vardali E, Bartekova M, Fogarassyova M, Barancik M, Radosinska J. Changes in activities of circulating MMP2 and MMP9 in patients suffering from heart failure in relation to gender, hypertension and treatment: a cross-sectional study. Physiological Research. 2016;65(Suppl 1):S149-152. PMID: 27643937
28. Alehagen U, Olsen RS, Länne T, Matussek A, Wågsäter D. PDGF-D gene polymorphism is associated with increased cardiovascular mortality in elderly men. BMC Medical Genetics. 2016;17(1):62. DOI: 10.1186/s12881-016-0325-z
29. Gammelmark A, Nielsen MS, Lundbye-Christensen S, Tjønneland A, Schmidt EB, Overvad K. Common Polymorphisms in the 5-Lipoxygenase Pathway and Risk of Incident Myocardial Infarction: A Danish Case-Cohort Study. PLOS ONE. 2016;11(11):e0167217. DOI: 10.1371/journal.pone.0167217
30. Azarova Yu.E., Klyosova E.Yu., Konoplya A.I. The role of polymorphisms of glutamate-cysteine ligase in type 2 diabetes mellitus susceptibility in Kursk population. Научный Результат. Медицина И Фармация. 2018;4 (1):39–52. [Russian: Азарова Ю. Э., Клесова Е.Ю., Конопля А. И. Роль полиморфизмов генов глутаматцистеинлигазы в развитии сахарного диабета 2 типа у жителей Курской области. Научный результат. Медицина и фармация. 2018;4(1):39–52]. DOI: 10.18413/2313-8955-2018-4-1-39-52
Review
For citations:
Moskalenko M.I., Milanova S.N., Ponomarenko I.V., Polonikov A.V., Churnosov M.I. Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men. Kardiologiia. 2019;59(7S):31-39. (In Russ.) https://doi.org/10.18087/cardio.2598