ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Why Myocardial Relaxation Always Slows at Cardiac Pathology?

https://doi.org/10.18087/cardio.2019.12.n801

Abstract

Chronic heart failure (CHF) in most cases is due to a decrease in myocardial contractility. In particular, this results in a reduction in the maximum rate of the pressure development in the left ventricle. At the same time the maximal rate of pressure fall at relaxation is also reduced. This is not surprising, since both depend on Ca ++ myoplasmic concentration. But most of cardiac pathologies have been associated with the impairement of myocardial relaxation to a greater extent than the contraction. In the review a new view has been proposed according to which this phenomenon is attributable to restructuring of titin, the sarcomeric protein that connects the ends of myosin filaments with the sarcomeric board, lines Z. A spring-like molecule of titin shrinks at sarcomeric contraction and straightens in parallel with removing of Ca ++ from myofibrils. A reduction of its stiffness, facilitating the filling of the left ventricle, can reduce restoring force of titin and thereby slow relaxation. The survey provides information about the functions of the calcium transport system and titin in the normal heart and in CHF observed both in experimental models and in patients.

About the Author

V. I. Kapelko
National Medical Research Center for Cardiology
Russian Federation

Kapelko Valery I. – MD, professor

Moscow



References

1. Meerson FZ, Kapelko VI. The significance of the interrelationship between the intensity of the contractile state and the velocity of relaxation in adapting cardiac muscle to function at high work loads. Journal of Molecular and Cellular Cardiology. 1975;7(11):793–806. DOI: 10.1016/0022-2828(75)90131-5

2. Watanabe T, Shintani F, Fu LT, Kato K. Maximal rate of the left ventricular pressure fall (peak negative dP/dt) in early stage of myocardial ischemia following experimental coronary occlusion. Japanese Heart Journal. 1975;16(5):583–91. DOI: 10.1536/ihj.16.583

3. Grossman W, McLaurin LP, Rolett EL. Alterations in left ventricular relaxation and diastolic compliance in congestive cardiomyopathy. Cardiovascular Research. 1979;13(9):514–22. DOI: 10.1093/cvr/13.9.514

4. Grossman W. Cardiac hypertrophy: useful adaptation or pathologic process? The American Journal of Medicine. 1980;69(4):576–84. DOI: 10.1016/0002-9343(80)90471-4

5. Katayama K, Kumada T, Fujii T, Moritani K, Miura T, Toma Y et al. Clinical characteristics of left ventricular pressure decline during isovolumic relaxation in normal and diseased hearts. American Heart Journal. 1984;107(2):332–8. DOI: 10.1016/0002-8703(84)90383-1

6. Hirota Y. A clinical study of left ventricular relaxation. Circulation. 1980;62(4):756–63. DOI: 10.1161/01.cir.62.4.756

7. Kapel’ko V.I. Effect of hypoxia and ischemia on myocardial ion transport and contractile function. Bulletin of Medical Sciences of the USSR RCRC. 1981;4(1):103–10.

8. Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circulation Research. 1989;64(5):827–52. DOI: 10.1161/01.res.64.5.827

9. Kapel’ko VI, Gorina MS, Novikova NA. Comparative evaluation of contraction and relaxation of isolated heart muscle with decreased calcium concentration in the perfusate, acidosis, and metabolic blockade. Journal of Molecular and Cellular Cardiology. 1982;14(Suppl 3):21–7. DOI: 10.1016/0022-2828(82)90125-0

10. Kapel’ko V.I., Gorina M.S. Calcium control of myocardial contraction and relaxation. Collected papers. - M.: Science, 1987. - P.79- 112. In: Control of myocardial contractile function and metabolim-M.: Science;1987.

11. Kapel’ko V.I. Role of the relaxation process in contractile function disturbance in various heart pathologies. Bulletin of Medical Sciences of the USSR RCRC. 1982;5(1):99–107.

12. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS letters. 2004;567(1):96–102. DOI: 10.1016/j.febslet.2004.03.071

13. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. The Journal of Physiology. 2000;529(1):57–68. DOI: 10.1111/j.1469-7793.2000.00057.x

14. Gyorke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovascular Research. 2007;77(2):245–55. DOI: 10.1093/cvr/cvm038

15. Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S et al. Mechanical Transduction of Nitric Oxide Synthesis in the Beating Heart. Circulation Research. 1997;81(3):372–9. DOI: 10.1161/01.RES.81.3.372

16. Yan Y, Liu J, Wei C, Li K, Xie W, Wang Y et al. Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes. Cardiovascular Research. 2008;77(2):432–41. DOI: 10.1093/cvr/cvm047

17. Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ. X-ROS signaling in the heart and skeletal muscle: Stretch-dependent local ROS regulates [Ca2+]i. Journal of Molecular and Cellular Cardiology. 2013;58:172–81. DOI: 10.1016/j.yjmcc.2012.11.011

18. Fukuda N, Wu Y, Nair P, Granzier HL. Phosphorylation of Titin Modulates Passive Stiffness of Cardiac Muscle in a Titin Isoform-dependent Manner. The Journal of General Physiology. 2005;125(3):257–71. DOI: 10.1085/jgp.200409177

19. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y et al. Differential Expression of Cardiac Titin Isoforms and Modulation of Cellular Stiffness. Circulation Research. 2000;86(1):59–67. DOI: 10.1161/01.RES.86.1.59

20. Guo W, Sun M. RBM20, a potential target for treatment of cardiomyopathy via titin isoform switching. Biophysical Reviews. 2018;10(1):15–25. DOI: 10.1007/s12551-017-0267-5

21. Helmes M, Trombitás K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circulation Research. 1996;79(3):619–26. DOI: 10.1161/01.res.79.3.619

22. Preetha N, Yiming W, Helmes M, Norio F, Siegfried L, Granzier H. Restoring force development by titin/connectin and assessment of Ig domain unfolding. Journal of Muscle Research and Cell Motility. 2006;26(6–8):307–17. DOI: 10.1007/s10974-005-9037-2

23. Linke W. Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovascular Research. 2008;77(4):637–48. DOI: 10.1016/j.cardiores.2007.03.029

24. Krüger M, Linke WA. Titin-based mechanical signalling in normal and failing myocardium. Journal of Molecular and Cellular Cardiology. 2009;46(4):490–8. DOI: 10.1016/j.yjmcc.2009.01.004

25. Hamdani N, Herwig M, Linke WA. Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophysical Reviews. 2017;9(3):225–37. DOI: 10.1007/s12551-017-0263-9

26. Krysiak J, Unger A, Beckendorf L, Hamdani N, von FrielingSalewsky M, Redfield MM et al. Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nature Communications. 2018;9(1):262. DOI: 10.1038/s41467-017-02483-3

27. Linke WA. Titin Gene and Protein Functions in Passive and Active Muscle. Annual Review of Physiology. 2018;80(1):389–411. DOI: 10.1146/annurev-physiol-021317-121234

28. Houser SR, Margulies KB. Is Depressed Myocyte Contractility Centrally Involved in Heart Failure? Circulation Research. 2003;92(4):350–8. DOI: 10.1161/01.RES.0000060027.40275.A6

29. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H et al. Alterations of Sarcoplasmic Reticulum Proteins in Failing Human Dilated Cardiomyopathy. Circulation. 1995;92(4):778–84. DOI: 10.1161/01.CIR.92.4.778

30. Hoch B, Meyer R, Hetzer R, Krause E-G, Karczewski P. Identification and Expression of δ-Isoforms of the Multifunctional Ca2+/Calmodulin-Dependent Protein Kinase in Failing and Nonfailing Human Myocardium. Circulation Research. 1999;84(6):713–21. DOI: 10.1161/01.RES.84.6.713

31. Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D et al. Protection from Cardiac Arrhythmia Through Ryanodine Receptor-Stabilizing Protein Calstabin2. Science. 2004;304(5668):292–6. DOI: 10.1126/science.1094301

32. Studer R, Reinecke H, Bilger J, Eschenhagen T, Böhm M, Hasenfuss G et al. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circulation Research. 1994;75(3):443–53. DOI: 10.1161/01.RES.75.3.443

33. Beuve CS, Allen PD, Dambrin G, Rannou F, Marty I, Trouvé P et al. Cardiac Calcium Release Channel (Ryanodine Receptor) in Control and Cardiomyopathic Human Hearts: mRNA and Protein Contents are Differentially Regulated. Journal of Molecular and Cellular Cardiology. 1997;29(4):1237–46. DOI: 10.1006/jmcc.1996.0360

34. Shannon TR, Lew WYW. Diastolic Release of Calcium From the Sarcoplasmic Reticulum: a potential target for treating triggered arrhythmias and heart failure. Journal of the American College of Cardiology. 2009;53(21):2006–8. DOI: 10.1016/j.jacc.2009.02.032

35. Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H. Phosphorylation Modulates the Function of the Calcium Release Channel of Sarcoplasmic Reticulum from Cardiac Muscle. Journal of Biological Chemistry. 1995;270(5):2074–81. DOI: 10.1074/jbc.270.5.2074

36. Mukherjee R, Spinale FG. L-type Calcium Channel Abundance and Function with Cardiac Hypertrophy and Failure: A Review. Journal of Molecular and Cellular Cardiology. 1998;30(10):1899–916. DOI: 10.1006/jmcc.1998.0755

37. Kho C, Lee A, Hajjar RJ. Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy. Nature Reviews Cardiology. 2012;9(12):717–33. DOI: 10.1038/nrcardio.2012.145

38. Epstein FH, Morgan JP. Abnormal Intracellular Modulation of Calcium as a Major Cause of Cardiac Contractile Dysfunction. New England Journal of Medicine. 1991;325(9):625–32. DOI: 10.1056/NEJM199108293250906

39. Kiss E, Ball NA, Kranias EG, Walsh RA. Differential Changes in Cardiac Phospholamban and Sarcoplasmic Reticular Ca2+-ATPase Protein Levels: Effects on Ca2+ Transport and Mechanics in Compensated Pressure-Overload Hypertrophy and Congestive Heart Failure. Circulation Research. 1995;77(4):759–64. DOI: 10.1161/01.RES.77.4.759

40. Zarain-Herzberg A, Afzal N, Elimban V, Elimban NS. Decreased expression of cardiac sarcoplasmic reticulum Ca2+-pump ATPase in congestive heart failure due to myocardial infarction. -Boston, MA: Springer US; 1996. - P.285-290. DOI: 10.1007/978-1-4613-1289-5_35. In: Biochemical Regulation of Myocardium Vetter R, Krause E-G, editors -Boston, MA: Springer US;1996.

41. Kapel’ko V. I., Lakomkin VL, Abramov AA, Lukoshkova EV, Undrovinas NA, Khapchaev AY et al. Protective Effects of Dinitrosyl Iron Complexes under Oxidative Stress in the Heart. Oxidative Medicine and Cellular Longevity. 2017;2017:1–10. DOI: 10.1155/2017/9456163

42. Studneva I.M., Lakomkin V.L., Prosvirnin A.V., Abramov A.A., Veselova O.M., Pisarenko O.I. et al. Energy state of myocardium in systolic dysfunction. Kardiologicheskii vestnik. 2018;13(3):31–4. DOI: 10.17116/Cardiobulletin20181303131

43. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure: Energy metabolism in heart failure. The Journal of Physiology. 2004;555(1):1–13. DOI: 10.1113/jphysiol.2003.055095

44. Lygate CA, Neubauer S. Metabolic Flux as a Predictor of Heart Failure Prognosis. Circulation Research. 2014;114(8):1228–30. DOI: 10.1161/CIRCRESAHA.114.303551

45. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK et al. Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts. Circulation Research. 2004;95(7):708–16. DOI: 10.1161/01.RES.0000143901.37063.2f

46. Hamdani N, Franssen C, Lourenço A, Falcão-Pires I, Fontoura D, Leite S et al. Myocardial Titin Hypophosphorylation Importantly Contributes to Heart Failure With Preserved Ejection Fraction in a Rat Metabolic Risk Model. Circulation: Heart Failure. 2013;6(6):1239–49. DOI: 10.1161/CIRCHEARTFAILURE.113.000539

47. Borbély A, Papp Z, Edes I, Paulus WJ. Molecular determinants of heart failure with normal left ventricular ejection fraction. Pharmacological reports: PR. 2009;61(1):139–45. PMID: 19307702

48. Bell SP, Nyland L, Tischler MD, McNabb M, Granzier H, LeWinter MM. Alterations in the Determinants of Diastolic Suction During Pacing Tachycardia. Circulation Research. 2000;87(3):235–40. DOI: 10.1161/01.RES.87.3.235

49. Wu Y, Bell SP, Trombitas K, Witt CC, Labeit S, LeWinter MM et al. Changes in Titin Isoform Expression in Pacing-Induced Cardiac Failure Give Rise to Increased Passive Muscle Stiffness. Circulation. 2002;106(11):1384–9. DOI: 10.1161/01.CIR.0000029804.61510.02

50. Hudson B, Hidalgo C, Saripalli C, Granzier H. Hyperphosphorylation of Mouse Cardiac Titin Contributes to Transverse Aortic Constriction-Induced Diastolic Dysfunction. Circulation Research. 2011;109(8):858–66. DOI: 10.1161/CIRCRESAHA.111.246819


Review

For citations:


Kapelko V.I. Why Myocardial Relaxation Always Slows at Cardiac Pathology? Kardiologiia. 2019;59(12):44-51. (In Russ.) https://doi.org/10.18087/cardio.2019.12.n801

Views: 4541


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)