Extracellular matrix of the heart and its changes in myocardial fibrosis
https://doi.org/10.18087/cardio.2020.6.n773
Abstract
About the Authors
O. V. GritsenkoRussian Federation
cardiologist
G. A. Chumakova
Russian Federation
cardiologist, professor
I. V. Shevlyakov
Russian Federation
cardiologist
N. G. Veselovskaya
Russian Federation
cardiologist
References
1. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G et al. Cardiovascular remodelling in coronary artery disease and heart failure. The Lancet. 2014;383(9932):1933–43. DOI: 10.1016/S0140-6736(14)60107-0
2. Liu T, Song D, Dong J, Zhu P, Liu J, Liu W et al. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure. Frontiers in Physiology. 2017;8:238. DOI: 10.3389/fphys.2017.00238
3. Shishkova V.N. Mechanisms of cardiovascular diseases development in obesity and insulin resistance: focus on atherothrombosis. Russian Journal of Cardiology. 2016;9:72–8. DOI: 10.15829/1560-4071-2016-9-72-78
4. Gyöngyösi M, Winkler J, Ramos I, Do Q, Firat H, McDonald K et al. Myocardial fibrosis: biomedical research from bench to bedside. European Journal of Heart Failure. 2017;19(2):177–91. DOI: 10.1002/ejhf.696
5. Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biology. 2018;68–69:490–506. DOI: 10.1016/j.matbio.2018.01.013
6. Horwich TB, Fonarow GC. Glucose, Obesity, Metabolic Syndrome, and Diabetes relevance to Incidence of Heart Failure. Journal of the American College of Cardiology. 2010;55(4):283–93. DOI: 10.1016/j.jacc.2009.07.029
7. Lakomkin S.V., Skvortsov A.A., Goryunova T.V., Masenko V.P., Tereshchenko S.N. Galectin 3 - a New Biomarker for Diagnostics and Outcome of Chronic Heart Failure. Kardiologiia. 2012;52(3):45–52.
8. Astashkin E.I., Glezer M.G. Cardiac lipotoxic effects of obesity. Arterial Hypertension. 2009;15(3):335–41. DOI: 10.18705/1607-419X-2009-15-3-335-341
9. Wende AR, Abel ED. Lipotoxicity in the heart. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2010;1801(3):311–9. DOI: 10.1016/j.bbalip.2009.09.023
10. Drapkina O.M., Chernova E.M. Myopathy as a side effect of statin therapy: mechanisms of development and prospects for treatment. Rational Pharmacotherapy in Cardiology. 2015;11(1):96–101.
11. Lucas JA, Zhang Y, Li P, Gong K, Miller AP, Hassan E et al. Inhibition of transforming growth factor-β signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart. American Journal of Physiology-Heart and Circulatory Physiology. 2010;298(2):H424–32. DOI: 10.1152/ajpheart.00529.2009
12. Blüher S, Mantzoros CS. Leptin in humans: lessons from translational research. The American Journal of Clinical Nutrition. 2009;89(3):991S-997S. DOI: 10.3945/ajcn.2008.26788E
13. Belaya N.V. Myocardium remodeling mechanisms in arterial hypertension. International Medical Journal. 2006;2:15–8.
14. Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M et al. Early Induction of Transforming Growth Factor-β via Angiotensin II Type 1 Receptors Contributes to Cardiac Fibrosis Induced by Long-term Blockade of Nitric Oxide Synthesis in Rats. Hypertension. 1998;32(2):273–9. DOI: 10.1161/01.HYP.32.2.273
15. Khan SA, Dong H, Joyce J, Sasaki T, Chu M-L, Tsuda T. Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β. Laboratory Investigation. 2016;96(7):773–83. DOI: 10.1038/labinvest.2016.52
16. Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure. Heart Failure Reviews. 2014;19(2):173–85. DOI: 10.1007/s10741-012-9365-4
17. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. Journal of Molecular and Cellular Cardiology. 2011;51(4):600–6. DOI: 10.1016/j.yjmcc.2010.10.033
18. Tan SM, Zhang Y, Connelly KA, Gilbert RE, Kelly DJ. Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology. 2010;298(5):H1415–25. DOI: 10.1152/ajpheart.01048.2009
19. Gavrilenko T.I., Ryzhkova N.A., Parkhomenko A.N. Vascular endothelial growth factor in the clinic of internal diseases and its pathogenetic value. Ukrainian Journal of Cardiology. 2011;4:87–95.
20. Gershteyn E.S., Kushlinskiy D.N., Tereshkina I.V., Ermilova V.D., Ovchinnikova L.K., Galdava D.E. et al. Vascular Endothelial Growth Factor and the Tumors of Female Reproductive System. Part I. Breast Cancer. Gynecologic Oncology. 2015;1:34–41.
21. Merentie M, Rissanen R, Lottonen-Raikaslehto L, Huusko J, Gurzeler E, Turunen MP et al. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice. PLOS ONE. 2018;13(1):e0190981. DOI: 10.1371/journal.pone.0190981
22. Park J, Kim M, Sun K, An YA, Gu X, Scherer PE. VEGF-A–Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4–Independent Metabolic Improvements. Diabetes. 2017;66(6):1479–90. DOI: 10.2337/db16-1081
23. Wada H, Ura S, Kitaoka S, Satoh-Asahara N, Horie T, Ono K et al. Distinct Characteristics of Circulating Vascular Endothelial Growth Factor-A and C Levels in Human Subjects. PLoS ONE. 2011;6(12):e29351. DOI: 10.1371/journal.pone.0029351
24. Loebig M, Klement J, Schmoller A, Betz S, Heuck N, Schweiger U et al. Evidence for a Relationship between VEGF and BMI Independent of Insulin Sensitivity by Glucose Clamp Procedure in a Homogenous Group Healthy Young Men. PLoS ONE. 2010;5(9):e12610. DOI: 10.1371/journal.pone.0012610
25. Ylä-Herttuala S, Baker AH. Cardiovascular Gene Therapy: Past, Present and Future. Molecular Therapy. 2017;25(5):1095–106. DOI: 10.1016/j.ymthe.2017.03.027
26. Baues M, Dasgupta A, Ehling J, Prakash J, Boor P, Tacke F et al. Fibrosis imaging: Current concepts and future directions. Advanced Drug Delivery Reviews. 2017;121:9–26. DOI: 10.1016/j.addr.2017.10.013
27. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences. 2014;71(4):549–74. DOI: 10.1007/s00018-013-1349-6
28. Löfsjögård J, Kahan T, Díez J, López B, González A, Ravassa S et al. Usefulness of Collagen Carboxy-Terminal Propeptide and Telopeptide to Predict Disturbances of Long-Term Mortality in Patients ≥60 Years With Heart Failure and Reduced Ejection Fraction. The American Journal of Cardiology. 2017;119(12):2042–8. DOI: 10.1016/j.amjcard.2017.03.036
29. Madahar P, Duprez DA, Podolanczuk AJ, Bernstein EJ, Kawut SM, Raghu G et al. Collagen biomarkers and subclinical interstitial lung disease: The Multi-Ethnic Study of Atherosclerosis. Respiratory Medicine. 2018;140:108–14. DOI: 10.1016/j.rmed.2018.06.001
30. Ratsina E.V., Govorin A.V., Sokolova N.A., Fetisova N.V. Dynamics of collagen synthesis and degradation biomarkers in acute transmural anterior myocardial infarction complicated by an aneurysm. Siberian Medical Journal (Irkutsk). 2014;130(7):23–6.
31. Eschalier R, Fertin M, Fay R, Bauters C, Zannad F, Pinet F et al. Extracellular Matrix Turnover Biomarkers Predict Long-Term Left Ventricular Remodeling After Myocardial Infarction: Insights From the REVE-2 Study. Circulation: Heart Failure. 2013;6(6):1199–205. DOI: 10.1161/CIRCHEARTFAILURE.113.000403
32. Iraqi W, Rossignol P, Angioi M, Fay R, Nuée J, Ketelslegers JM et al. Extracellular Cardiac Matrix Biomarkers in Patients With Acute Myocardial Infarction Complicated by Left Ventricular Dysfunction and Heart Failure: Insights From the Eplerenone Post–Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation. 2009;119(18):2471–9. DOI: 10.1161/CIRCULATIONAHA.108.809194
33. de Boer RA, Daniels LB, Maisel AS, Januzzi JL. State of the Art: Newer biomarkers in heart failure: Newer biomarkers in heart failure. European Journal of Heart Failure. 2015;17(6):559–69. DOI: 10.1002/ejhf.273
34. Lupu S, Agoston-Coldea L. Soluble ST2 in Ventricular Dysfunction. In: Advances in Clinical Chemistry. - Elsevier;2015. - P.139-159. [ISBN: 978-0-12-802265-8; DOI: 10.1016/bs.acc.2014.12.005].
35. Shah RV, Januzzi JL. Soluble ST2 and Galectin-3 in Heart Failure. Clinics in Laboratory Medicine. 2014;34(1):87–97. DOI: 10.1016/j.cll.2013.11.009
36. Dyleva Yu.A., Gruzdeva O.V., Uchashova E.G., Kuzmina A.A., Karetnikova V.N. Stimulating growth factor ST2 in cardiology: the present and prospects. Treating doctor. 2017;11:65–71.
37. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. Journal of Clinical Investigation. 2007;117(6):1538–49. DOI: 10.1172/JCI30634
38. Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 Axis in Organ Fibrosis. Frontiers in Immunology. 2018;9:2432. DOI: 10.3389/fimmu.2018.02432
39. Sánchez-Más J, Lax A, Asensio-López M del C, Fernandez-Del Palacio MJ, Caballero L, Santarelli G et al. Modulation of IL-33/ST2 system in postinfarction heart failure: correlation with cardiac remodelling markers. European Journal of Clinical Investigation. 2014;44(7):643–51. DOI: 10.1111/eci.12282
Review
For citations:
Gritsenko O.V., Chumakova G.A., Shevlyakov I.V., Veselovskaya N.G. Extracellular matrix of the heart and its changes in myocardial fibrosis. Kardiologiia. 2020;60(6):107–112. (In Russ.) https://doi.org/10.18087/cardio.2020.6.n773