Efficiency of pharmacogenetic approach to anticoagulant therapy in patients with prosthetic heart valves
https://doi.org/10.18087/cardio.n681
Abstract
Background. This study examined clinical, demographic, anthropometric, and inheritance factors that influence individual sensitivity to warfarin therapy after heart valve surgery. The clinical significance of the pharmacogenetic approach was assessed using the individual time frame and time spent in the INR therapeutic range. Aims. We determined the clinical outcome of the pharmacogenetic approach at the start of warfarin therapy in patients with prosthetic heart valves. Materials and methods. The study included 915 patients, of which 512 women and 403 men (mean age 56±10 years), living in Western Siberia. Rheumatic heart disease was the main diagnosis that caused the acquired defect. Mechanical prostheses were used in 70% of cases of cardiac surgery. Real-time polymerase chain reaction used for molecular genetic testing. Results. The frequencies of the alleles and genotypes of CYP2C9 and VKORC1 in the study population of patients with heart valves prosthetic correspond to the distribution in Caucasoid populations. The use of pharmacogenetic testing results at the beginning of warfarin therapy reduced the time required for selecting a therapeutic dose of anticoagulant by 2 times and increased the duration of stay in the INR therapeutic range by 20.2%. Conclusion. The use of the pharmacogenetic approach at the begin‑ ning of warfarin therapy contributes to the effectiveness and safety of anticoagulant therapy in this category of patients.
Keywords
About the Authors
E. V. GorbunovaRussian Federation
DM, Leading Researcher of the Laboratory of Cardiac Rhythm Disturbances and Electrocardiostimulation, Head of the CardiologicOutpatientHospital
V. V. Rozhnev
Russian Federation
Clinical intern
A. V. Ponasenko
Russian Federation
PhD, Head of the Laboratory of Genomic Medicine
Olga Leonidovna Barbarash
Russian Federation
Director of NII, Professor, DM, Corresponding Member of the RAS
References
1. Gilyarov M.Yu., Generozov E.V., Magomadova M.U., Moroshkina S.Yu., Pogoda T.V., Kostin P.A. et al. Algorithm of selection of an optimal dose of warfarin considering the polymorphism of cytochrome CYP2C9 gene and subunit 1 of vitamin K epoxide reductase gene. Journal of Arrhythmology. 2011;63:28–31.
2. Gorbunova E.V., Odarenko Yu.N., Mamchur S.E., Kudryavtseva N.G., Salahov R.R. Improving efficiency and safety of anticoagulation therapy in patients with prosthetic heart valves. Complex Issues of Cardiovascular Diseases. 2015;4:26–33.
3. Park YK, Lee MJ, Kim JH, Lee JS, Park RW, Kim G-M et al. Genetic and Non-Genetic Factors Affecting the Quality of Anticoagulation Control and Vascular Events in Atrial Fibrillation. Journal of Stroke and Cerebrovascular Diseases. 2017;26(6):1383–90. DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.022
4. Pop T.R., Chirila D.N., Buzoianu A.D. Pharmacogenetics of oral anticoagulant therapy. Human and Veterinary Medicine. 2013;5(1):9–13. [Av. at: https://www.researchgate.net/publication/265850394_Pharmacogenetics_of_oral_anticoagulant_therapy]
5. Wright DFB, Duffull SB. A Bayesian Dose-Individualization Method for Warfarin. Clinical Pharmacokinetics. 2013;52(1):59–68. DOI: 10.1007/s40262-012-0017-6
6. Epstein RS, Moyer TP, Aubert RE, O’Kane DJ, Xia F, Verbrugge RR et al. Warfarin Genotyping Reduces Hospitalization Rates. Journal of the American College of Cardiology. 2010;55(25):2804–12. DOI: 10.1016/j.jacc.2010.03.009
7. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT et al. Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data. New England Journal of Medicine. 2009;360(8):753–64. DOI: 10.1056/NEJMoa0809329
8. Chen W, Wu L, Liu X, Shen Y, Liang Y, Zhu J et al. Warfarin dose requirement with different genotypes of polymorphisms on CYP2C9 and VKORC1 and indications in Han-Chinese patients. Int. Journal of Clinical Pharmacology and Therapeutics. 2017;55(02):126–32. DOI: 10.5414/CP202494
9. Kropacheva E.S., Borovkov N.N., Vavilova T.V., Vereina N.K., Vorobyova N.A., Galkina I.S. et al. Fast saturation with warfarin is a predictor of excessive hypocoagulation. Adjusting the algorithm for warfarin dosage. Atherothrombosis. 2015;1:74–86.
10. Zateyshchikov D.A., Zotova I.V., Dankovtseva E.N., Sidorenko B.A. Thrombosis and antithrombotic therapy for arrhyth mias. – M.: Praktika; 296 p. ISBN 978-5-89816-100-2
11. Sychev D.A., Ivashchenko D.V., Rusin I.V. The impact of pharmacogenetic testing on the risk of bleeding and episodes of excessive hypo coagulation in the use of warfarin: the first meta-analysis of domes tic prospective studies. Therapeutic Archive. 2014;86 (4):64–71.
12. Tang W, Shi Q, Ding F, Yu M-L, Hua J, Wang Y. Impact of VKORC1 gene polymorphisms on warfarin maintenance dosage: A novel systematic review and meta-analysis of 53 studies. Int. Journal of Clinical Pharmacology and Therapeutics. 2017;55(04):304–21. DOI: 10.5414/CP202833
13. Biswas M, Bendkhale SR, Deshpande SP, Thaker SJ, Kulkarni DV, Bhatia SJ et al. Association between genetic polymorphisms of CYP2C9 and VKORC1 and safety and efficacy of warfarin: Results of a 5 years audit. Indian Heart Journal. 2018;70(Suppl 3):S13–9. DOI: 10.1016/j.ihj.2018.02.005
14. Tan G-M, Wu E, Lam Y-Y, Yan BP. Role of warfarin pharmacogenetic testing in clinical practice. Pharmacogenomics. 2010;11(3):439– 48. DOI: 10.2217/pgs.10.8
15. Sridharan K, Modi T, Bendkhale S, Kulkarni D, Gogtay NJ, Thatte UM. Association of Genetic Polymorphisms of CYP2C9 and VKORC1 with Bleeding Following Warfarin: A Case-Control Study. Current Clinical Pharmacology. 2016;11(1):62–8. PMID: 26777610
16. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33. DOI: 10.1182/blood-2005-03-1108
17. Gorbunova E.V., Salahov R.R., Goncharova I.A., Romanova M.P., Golovina T.S., Kurguzova E.M. et al. Pharmacogenetic testing and monitoring of anticoagulation in patients with prosthetic heart valves (the results of pilot study). Cardiology and cardiovascular surgery. 2014;7 (1):50–3.
18. Ferder NS, Eby CS, Deych E, Harris JK, Ridker PM, Milligan PE et al. Ability of VKORC1 and CYP2C9 to predict therapeutic warfarin dose during the initial weeks of therapy. Journal of Thrombosis and Haemostasis. 2010;8(1):95–100. DOI: 10.1111/j.15387836.2009.03677.x
19. Ansell J, Hirsh J, Dalen J, Bussey H, Anderson D, Poller L et al. Managing oral anticoagulant therapy. Chest. 2001;119 (1 Suppl):22S-38S. DOI: 10.1378/chest.119.1_suppl.22s
20. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briët E. A method to determine the optimal intensity of oral anticoagulant therapy. Thrombosis and Haemostasis. 1993;69(3):236–9. PMID: 8470047
21. Christensen TD, Larsen TB. Precision and accuracy of point-ofcare testing coagulometers used for self-testing and self-management of oral anticoagulation therapy: Point-of-care coagulometers. Journal of Thrombosis and Haemostasis. 2012;10(2):251–60. DOI: 10.1111/j.1538-7836.2011.04568.x
22. Horne B, Lenzini P, Wadelius M, Jorgensen A, Kimmel S, Ridker P et al. Pharmacogenetic warfarin dose refinements remain significantly influenced by genetic factors after one week of therapy. Thrombosis and Haemostasis. 2012;107(2):232–40. DOI: 10.1160/TH11-06-0388
23. Perreault S, Shahabi P, Côté R, Dumas S, Rouleau-Mailloux É, Feroz Zada Y et al. Rationale, design, and preliminary results of the Quebec Warfarin Cohort Study. Clinical Cardiology. 2018;41(5):576–85. DOI: 10.1002/clc.22948
24. Wypasek E, Mazur P, Bochenek M, Awsiuk M, Grudzien G, Plicner A et al. Factors influencing quality of anticoagulation control and warfarin dosage in patients after aortic valve replacement within the 3 months of follow up. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society. 2016;67(3):385–93. PMID: 27511999
25. Gilyarov M.Yu., Generozov E.V., Magomadova M.U., Moroshkina S.Yu., Pogoda T.V., Kostin P.A. et al. Algorithm of selection of an optimal dose of warfarin considering the polymorphism of cytochrome CYP2C9 gene and subunit 1 of vitamin K epoxide reductase gene. Journal of Arrhythmology. 2011;63:28–31.
26. Park YK, Lee MJ, Kim JH, Lee JS, Park RW, Kim G-M et al. Genetic and Non-Genetic Factors Affecting the Quality of Anticoagulation Control and Vascular Events in Atrial Fibrillation. Journal of Stroke and Cerebrovascular Diseases. 2017;26(6):1383–90. DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.022
27. Wright DFB, Duffull SB. A Bayesian Dose-Individualization Method for Warfarin. Clinical Pharmacokinetics. 2013;52(1):59–68. DOI: 10.1007/s40262-012-0017-6
28. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT et al. Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data. New England Journal of Medicine. 2009;360(8):753–64. DOI: 10.1056/NEJMoa0809329
29. Kropacheva E.S., Borovkov N.N., Vavilova T.V., Vereina N.K., Vorobyova N.A., Galkina I.S. et al. Fast saturation with warfarin is a predictor of excessive hypocoagulation. Adjusting the algorithm for warfarin dosage. Atherothrombosis. 2015;1:74–86.
30. Sychev D.A., Ivashchenko D.V., Rusin I.V. The impact of pharmacogenetic testing on the risk of bleeding and episodes of excessive hypo coagulation in the use of warfarin: the first meta-analysis of domes tic prospective studies. Therapeutic Archive. 2014;86 (4):64–71.
31. Biswas M, Bendkhale SR, Deshpande SP, Thaker SJ, Kulkarni DV, Bhatia SJ et al. Association between genetic polymorphisms of CYP2C9 and VKORC1 and safety and efficacy of warfarin: Results of a 5 years audit. Indian Heart Journal. 2018;70(Suppl 3):S13–9. DOI: 10.1016/j.ihj.2018.02.005
Review
For citations:
Gorbunova E.V., Rozhnev V.V., Ponasenko A.V., Barbarash O.L. Efficiency of pharmacogenetic approach to anticoagulant therapy in patients with prosthetic heart valves. Kardiologiia. 2019;59(9S):25-30. (In Russ.) https://doi.org/10.18087/cardio.n681