Markers of Vascular Wall Fibrosis Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinases-1 in Patients with Ischemic Heart Disease with and without Concomitant Type-2 Diabetes Mellitus
https://doi.org/10.18087/cardio.2019.5.10258
Abstract
The prevalence of ischemic heart disease (IHD) and diabetes mellitus type 2 (DM type 2) is permanently increasing both worldwide and in theRussian Federation. That is why studies of mechanisms of pathogenesis of both diseases is continuing for prevention of complications and mortality. DM type 2 contributes a lot to deterioration of IHD. One of pathogenetic features these two pathologies share is pronounced blood vessel wall fibrosis. In this review we present analysis of studies devoted to the determination of the role of metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 indevelopment of vascular wall fibrosis.
About the Authors
Y. N. BelenkovRussian Federation
Moscow
E. V. Privalova
Russian Federation
Moscow
A. O. Iusupova
Russian Federation
PhD.
Moscow
A. V. Zhito
Russian Federation
Moscow
References
1. World Health Organization. WHO: Russian Federation. Statistics. [Интернет] Available at: http://www.who.int/countries/rus/en/
2. World Health Organization. WHO: Global report on diabetes. [Интернет] 2016. Available at: http://www.who.int/diabetes/global-report/en/
3. Dedov I. I., Shestakova M. V., Vikulova O. K. Epidemiology of diabetes mellitus in Russian Federation: clinical and statistical report according to the federal diabetes registry. Diabetes. 2017;20(1):13– 41. [Russian]
4. Haffner SM. Cardiovascular risk factors and the prediabetic syndrome. Annals of Medicine. 1996;28(4):363–70. PMID: 8862692
5. Juutilainen A, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Type 2 diabetes as a “coronary heart disease equivalent”: an 18-year prospective population-based study in Finnish subjects. Diabetes Care. 2005;28(12):2901–7. PMID: 16306552
6. Wannamethee SG. Cardiovascular disease incidence and mortality in older men with diabetes and in men with coronary heart disease. Heart. 2004;90(12):1398–403. DOI: 10.1136/hrt.2003.026104
7. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332(7533):73–8. DOI: 10.1136/bmj.38678.389583.7C
8. Visse R, Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circulation Research. 2003;92(8):827–39. DOI: 10.1161/01.RES.0000070112.80711.3D
9. Persic V, Bastiancic AL, Rosovic I, Raljevic D, Samsa DT, Bastiancic L et al. Correlation between immunological-inflammatory markers and endothelial disfunction in the early stage of coronary heart disease. Medical Hypotheses. 2018;115:72–6. DOI: 10.1016/j.mehy.2018.04.001
10. Lahdentausta L, Leskela J, Winkelmann A, Tervahartiala T, Sorsa T, Pesonen E et al. Serum MMP-9 Diagnostics, Prognostics, and Activation in Acute Coronary Syndrome and Its Recurrence. Journal of Cardiovascular Translational Research. 2018;11(3):210– 20. DOI: 10.1007/s12265-018-9789-x
11. Newby AC. Dual Role of Matrix Metalloproteinases (Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture. Physiological Reviews. 2005;85(1):1–31. DOI: 10.1152/physrev.00048.2003
12. Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation. 1995;91(8):2125–31. PMID: 7697840
13. Cimmino G, Ragni M, Cirillo P, Petrillo G, Loffredo F, Chiariello M et al. C-reactive protein induces expression of matrix metalloproteinase9: A possible link between inflammation and plaque rupture. International Journal of Cardiology. 2013;168(2):981–6. DOI: 10.1016/j.ijcard.2012.10.040
14. Ferroni P, Basili S, Martini F, Cardarello CM, Ceci F, Di Franco M et al. Serum Metalloproteinase 9 Levels in Patients with Coronary Artery Disease: A Novel Marker of Inflammation. Journal Of Investigative Medicine. 2003;51(5):295–300. DOI: 10.2310/6650.2003.3563
15. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G et al. Plasma Concentrations and Genetic Variation of Matrix Metalloproteinase 9 and Prognosis of Patients With Cardiovascular Disease. Circulation. 2003;107(12):1579–85. DOI: 10.1161/01.CIR.0000058700.41738.12
16. Mirhafez SR, Avan A, Tajfard M, Mohammadi S, Moohebati M, Fallah A et al. Relationship between serum cytokines receptors and matrix metalloproteinase 9 levels and coronary artery disease. Journal of Clinical Laboratory Analysis. 2017;31(5):e22100. DOI: 10.1002/jcla.22100
17. Yang DJ, Lee M-S, Kim WH, Park HW, Kim K-H, Kwon T-G et al. The impact of glucose control on coronary plaque composition in patients with diabetes mellitus. The Journal of Invasive Cardiology. 2013;25(3):137–41. PMID: 23468443
18. Kalela A, Koivu TA, Sisto T, Kanervisto J, Hoyhtya M, Sillanaukee P et al. Serum matrix metalloproteinase-9 concentration in angiographically assessed coronary artery disease. Scandinavian Journal of Clinical and Laboratory Investigation. 2002;62(5):337–42. DOI: 10.1080/00365510260296483
19. Kai H, Ikeda H, Yasukawa H, Kai M, Seki Y, Kuwahara F et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. Journal of the American College of Cardiology. 1998;32(2):368–72. PMID: 9708462
20. Weihrauch D, Lohr NL, Mraovic B, Ludwig LM, Chilian WM, Pagel PS et al. Chronic Hyperglycemia Attenuates Coronary Collateral Development and Impairs Proliferative Properties of Myocardial Interstitial Fluid by Production of Angiostatin. Circulation. 2004;109(19):2343–8. DOI: 10.1161/01.CIR.0000129225.67353.1F
21. Mahajan N, Malik N, Bahl A, Sharma Y, Dhawan V. Correlation among soluble markers and severity of disease in non-diabetic subjects with pre-mature coronary artery disease. Molecular and Cellular Biochemistry. 2009;330(1–2):201–9. DOI: 10.1007/s11010-009-0134-1
22. Zouridakis E, Avanzas P, Arroyo-Espliguero R, Fredericks S, Kaski JC. Markers of Inflammation and Rapid Coronary Artery Disease Progression in Patients With Stable Angina Pectoris. Circulation. 2004;110(13):1747–53. DOI: 10.1161/01.CIR.0000142664.18739.92
23. Noji Y, Kajinami K, Kawashiri M, Todo Y, Horita T, Nohara A et al. Circulating Matrix Metalloproteinases and Their Inhibitors in Premature Coronary Atherosclerosis. Clinical Chemistry and Laboratory Medicine. 2001;39(5):380–4. DOI: 10.1515/CCLM.2001.060
24. Fitzsimmons PJ, Forough R, Lawrence ME, Gantt DS, Rajab MH, Kim H et al. Urinary levels of matrix metalloproteinase 9 and 2 and tissue inhibitor of matrix metalloproteinase in patients with coronary artery disease. Atherosclerosis. 2007;194(1):196–203. DOI: 10.1016/j.atherosclerosis.2006.07.027
25. Tanindi A, Sahinarslan A, Elbeg S, Cemri M. Association of matrix metalloproteinase-1, matrix metalloproteinase-9, tissue inhibitor of matrix metalloproteinase-1, and interleukin-6 with epicardial and myocardial perfusion: Coronary Artery Disease. 2011;22(4):253– 8. DOI: 10.1097/MCA.0b013e328343fc18
26. Arsenault BJ, Kohli P, Lambert G, DeMicco DA, Laskey R, Messig MM et al. Emerging Cardiovascular Disease Biomarkers and Incident Diabetes Mellitus Risk in Statin-Treated Patients With Coronary Artery Disease (from the Treating to New Targets [TNT] Study). The American Journal of Cardiology. 2016;118(4):494–8. DOI: 10.1016/j.amjcard.2016.05.044
27. Ceron CS, Luizon MR. Plasma matrix metalloproteinases in coronary artery disease patients. European Journal of Clinical Investigation. 2016;46(1):104–5. DOI: 10.1111/eci.12537
28. Macarie RD, Vadana M, Ciortan L, Tucureanu MM, Ciobanu A, Vinereanu D et al. The expression of MMP‐1 and MMP‐9 is upregulated by smooth muscle cells after their cross‐talk with macrophages in high glucose conditions. Journal of Cellular and Molecular Medicine. 2018;22(9):4366–76. DOI: 10.1111/jcmm.13728
29. Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. Frontiers in Bioscience (Landmark Edition). 2016;21:89–118. PMID: 26709763
30. Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(2):283–8. PMID: 12588772
31. Yamamoto D, Takai S. Pharmacological implications of MMP-9 inhibition by ACE inhibitors. Current Medicinal Chemistry. 2009;16(11):1349–54. PMID: 19355890
32. Beton O, Arslan S, Acar B, Ozbilum N, Berkan O. Association between MMP-3 and MMP-9 polymorphisms and coronary artery disease. Biomedical Reports. 2016;5(6):709–14. DOI: 10.3892/br.2016.782
33. Nakagawa P, Romero CA, Jiang X, D’Ambrosio M, Bordcoch G, Peterson EL et al. Ac-SDKP decreases mortality and cardiac rupture after acute myocardial infarction. PLOS ONE. 2018;13(1):e0190300. DOI: 10.1371/journal.pone.0190300
Review
For citations:
Belenkov Y.N., Privalova E.V., Iusupova A.O., Zhito A.V. Markers of Vascular Wall Fibrosis Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinases-1 in Patients with Ischemic Heart Disease with and without Concomitant Type-2 Diabetes Mellitus. Kardiologiia. 2019;59(5):61-66. (In Russ.) https://doi.org/10.18087/cardio.2019.5.10258