ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Carotid Wall Shear Rate as a Marker of Systemic Atherosclerosis and Atherosclerotic Cardiovascular Disease

https://doi.org/10.18087/cardio.2019.5.2581

Abstract

Aim: to assess possibility of the use of carotid wall shear rate (WSR) as a marker of systemic atherosclerosis and atherosclerotic cardiovascular disease (ASCVD).

Materials and methods. We included into this study 200 patients with different cardiovascular risk (142 patients already had one or more ASCVD). All patients underwent ultrasound scanning of carotid and lower limb arteries with measurement of the ankle-brachial index. Carotid WSR was determined during ultrasonic scanning of carotid arteries in accordance with the Hagen-Poiseuille law.

Results. Mean WSR value in this cohort of patients was 434±139 s–1. Based on the results of the ROCanalysis, it was found that WSR below the threshold value of 300 s–1 allowed to predict the presence of ASCVD with sensitivity of 97.1 % and specificity of 84.6 %. WSR <300 s–1 was associated with relative risk (RR) of ASCVD presence 11.2 (95 % CI 1.26–99.3, p=0.03), adjusted for factors such as sex, age, smoking, obesity, hypertension, estimated glomerular filtration rate (eGFR), low density lipoprotein cholesterol, and high sensitivity C-reactive protein, carotid intima-media thickness. The model which included carotid WSR, as well as factors such as the presence of type 2 diabetes, obesity, sex, age, eGFR, allowed to diagnose combined atherosclerotic lesions of peripheral arteries with a sensitivity of 73.1 % and a specificity of 90.3 %.

Conclusion. Evaluation of the carotid WSR allows to diagnose with satisfactory sensitivity and specificity the presence of combined atherosclerosis of peripheral arteries and ASCVD. 

About the Authors

V. V. Genkel
South Ural State Medical University
Russian Federation

Genkel Vadim V. – research assistant

Chelyabinsk



I. I. Shaposhnik
South Ural State Medical University
Russian Federation
Chelyabinsk


References

1. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Heart Journal. 2016;37(29):2315–81. DOI: 10.1093/eurheartj/ehw106

2. Tarkin JM, Dweck MR, Evans NR, Takx RAP, Brown AJ, Tawakol A et al. Imaging Atherosclerosis. Circulation Research. 2016;118(4):750–69. DOI: 10.1161/CIRCRESAHA.115.306247

3. Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nature Reviews Cardiology. 2016;13(4):210–20. DOI: 10.1038/nrcardio.2015.203

4. Parker BA, Trehearn TL, Meendering JR. Pick your Poiseuille: normalizing the shear stimulus in studies of flow-mediated dilation. Journal of Applied Physiology. 2009;107(4):1357–9. DOI: 10.1152/japplphysiol.91302.2009

5. Papaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods. Hellenic journal of cardiology: HJC = Hellenike kardiologike epitheorese. 2005;46(1):9–15. PMID: 15807389

6. Moskovtsev A. A., Kolesov D. V., Mylnikova A. N., Zaychenko D. M., Sokolovskaya A. A., Kubatiev A. A. Endothelial shear stress responses: mechanotransduction, cell stress and adaptation. Pathological physiology and experimental therapy. 2017;61(4):112–25. [Russian]. DOI: 10.25557/igpp.2017.4.8531

7. Ivanova O. V., Rogoza A. N., Balakhonova T. V., Soboleva G. N., At’kov O. Yu., Karpov Yu. A. Sensitivity of endothelium of the brachial artery to shear stress-method to evaluate endothelial function in patients with hypertension. Kardiologiia. 1998;38(3):37– 42. [Russian]

8. Thondapu V, Bourantas CV, Foin N, Jang I-K, Serruys PW, Barlis P. Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. European Heart Journal. 2017;38(2):81–92. DOI: 10.1093/eurheartj/ehv689

9. Vascular engineering: new prospects of vascular medicine and biology with a multidiscipline approach. -Tokyo: Springer; Редакторы: Tanishita, K, Yamamoto, K 401 с. ISBN 978-4-431-54800-3

10. Arzani A, Gambaruto AM, Chen G, Shadden SC. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows. Biomechanics and Modeling in Mechanobiology. 2017;16(3):787–803. DOI: 10.1007/s10237016-0853-7

11. Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R et al. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 2011;214(2):249–56. DOI: 10.1016/j.atherosclerosis.2010.09.008

12. Touboul P-J, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N et al. Mannheim Carotid Intima-Media Thickness and Plaque Consensus (2004 2006 2011). Cerebrovascular Diseases. 2012;34(4):290–6. DOI: 10.1159/000343145

13. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C et al. Measurement and Interpretation of the AnkleBrachial Index: A Scientific Statement From the American Heart Association. Circulation. 2012;126(24):2890–909. DOI: 10.1161/CIR.0b013e318276fbcb

14. LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T et al. Notch: A multi-functional integrating system of microenvironmental signals. Developmental Biology. 2016;418(2):227–41. DOI: 10.1016/j.ydbio.2016.08.023

15. Fong-Chin S, Chia-Ching W, Shu C. Roles of Microenvironment and Mechanical Forces in Cell and Tissue Remodeling. Journal of Medical and Biological Engineering. 2011;31(4):233–44. DOI: 10.5405/jmbe.944

16. Azar D, Ohadi D, Rachev A, Eberth JF, Uline MJ, Shazly T. Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: A computational study. PLOS ONE. 2018;13(2):e0192032. DOI: 10.1371/journal.pone.0192032

17. Chen Z, Yu H, Shi Y, Zhu M, Wang Y, Hu X et al. Vascular Remodelling Relates to an Elevated Oscillatory Shear Index and Relative Residence Time in Spontaneously Hypertensive Rats. Scientific Reports. 2017;7(1). DOI: 10.1038/s41598-017-01906-x

18. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y et al. Brachial artery diameter as a marker for cardiovascular risk assessment: FMD-J study. Atherosclerosis. 2018;268:92–8. DOI: 10.1016/j.atherosclerosis.2017.11.022

19. Fok P-W. Multi-Layer Mechanical Model of Glagov Remodeling in Coronary Arteries: Differences between In-Vivo and Ex-Vivo Measurements. PLOS ONE. 2016;11(7):e0159304. DOI: 10.1371/journal.pone.0159304

20. Homma S, Sloop GD, Zieske AW. The Effect of Age and Other Atherosclerotic Risk Factors on Carotid Artery Blood Velocity in Individuals Ranging From Young Adults to Centenarians. Angiology. 2009;60(5):637–43. DOI: 10.1177/0003319708325447

21. Genkel V. V., Salashenko A. O., Alekseeva O. A., Denisenko M. N., Shaposhnik I. I. Investigation of endothelial shear rate in patients with atherosclerosis of the carotid arteries. The Journal of Atherosclerosis and Dyslipidemias. 2016;2(23):58–64. [Russian]

22. Genkel V, Salashenko AO, Toropova LR, Ilinykh EI, Sumerkina VA, Shaposhnik II. Wall shear rate in patients with hypertension at different stages of atherosclerosis. European Heart Journal. 2017;38(suppl_ 1):282–3. DOI: 10.1093/eurheartj/ehx502.P1415

23. Kuznecova A.S., Dolgushina A.I., Shaposhnik I.I., Savochkina A. Yu., Genkel V. V., Melnikov I. Yu. Research of hemodynamic in visceral branches of the abdominal aorta in patients with nonalcoholic fatty liver disease. Ural medical journal. 2016;1(134):91–5. [Russian]

24. Xing R, Moerman AM, Ridwan Y, Daemen MJ, van der Steen AFW, Gijsen FJH et al. Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice. Royal Society Open Science. 2018;5(3):171447. DOI: 10.1098/rsos.171447

25. Zhang B, Gu J, Qian M, Niu L, Zhou H, Ghista D. Correlation between quantitative analysis of wall shear stress and intima-media thickness in atherosclerosis development in carotid arteries. BioMedical Engineering OnLine. 2017;16(1). DOI: 10.1186/s12938-017-0425-9

26. Carallo C, Tripolino C, De Franceschi MS, Irace C, Xu XY, Gnasso A. Carotid endothelial shear stress reduction with aging is associated with plaque development in twelve years. Atherosclerosis. 2016;251:63–9. DOI: 10.1016/j.atherosclerosis.2016.05.048

27. Cho KI, Kim BH, Kim HS, Heo JH. Low Carotid Artery Wall Shear Stress is Associated with Significant Coronary Artery Disease in Patients with Chest Pain. Journal of Atherosclerosis and Thrombosis. 2016;23(3):297–308. DOI: 10.5551/jat.31377

28. Zhang H, Liu H, Dong Y, Wang J, Zhao Y, Cui Y et al. Low carotid wall shear stress independently accelerates the progression of cognitive impairment and white matter lesions in the elderly. Oncotarget. 2018;9(13):11402–11413. DOI: 10.18632/oncotarget.23191


Review

For citations:


Genkel V.V., Shaposhnik I.I. Carotid Wall Shear Rate as a Marker of Systemic Atherosclerosis and Atherosclerotic Cardiovascular Disease. Kardiologiia. 2019;59(5):45-52. (In Russ.) https://doi.org/10.18087/cardio.2019.5.2581

Views: 1297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)