Macrophages and Their Role in Destabilization of an Atherosclerotic Plaque
https://doi.org/10.18087/cardio.2019.4.10254
Abstract
The modern data on structure and the functional activity of macrophages are presented in the review. It is shown that they are the nonhomogeneous cell population. Two of their main subpopulations are presented as M1 and M2 phenotypes which perform opposite functions at inflammation development. The main attention in the review is paid to a role of macrophages in pathogenesis of atherosclerosis and, first, in formation of unstable atherosclerotic plaques which are the cause of the most severe complications of the disease. It is shown that main subpopulations of macrophages play different roles in formation of unstable and stable atherosclerotic plaques. Macrophages of M1 phenotype in the vascular wall carry out pro-atherogenic role and influence destabilization of an atherosclerotic plaque, while M2 macrophages perform atheroprotective function.
About the Authors
P. V. PigarevskyRussian Federation
Department of the General and Private Morphology
MD, ScD
V. A. Snegova
Russian Federation
P. G. Nazarov
Russian Federation
References
1. Gordon S. Macrophage heterogeneity and tissue lipids. Journal of Clinical Investigation. 2007;117(1):1–4. DOI: 10.1172/JCI30992
2. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2008;8(12):958–69. DOI: 10.1038/nri2448
3. Park I, Kassiteridi C, Monaco C. Functional diversity of macrophages in vascular biology and disease. Vascular Pharmacology. 2017;99:13–22. DOI: 10.1016/j.vph.2017.10.005
4. Libby P. Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(9):2045–51. DOI: 10.1161/ATVBAHA.108.179705
5. Anichkov N.N. Private pathological anatomy. Part 2. Vessel. ed. A.I. Abrikosov. -M.-L.: Medgiz, 1940. 262–390pp.
6. Nagornev V.A., Anestiady V.Ch., Zota E.G. Pathomorphosis of atherosclerosis (immunoaspects). -St. Petersburg: Central printing house; 2008. 318p. ISBN 978-9975-78-643-0
7. Nagornev VA, Maltseva SV. The phenotype of macrophages which are not transformed into foam cells in atherogenesis. Atherosclerosis. 1996;121(2):245–51. PMID: 9125298
8. Nagornev V.A. Atherosclerosis pathogenesis. St.- Petersburg: Chromis; 2006. 240p.
9. Nagornev V.A., Maltseva S.V. Autoimmune and inflammatory mechanisms of atherosclerosis development. Archive of pathology. 2005;67(5):6–15.
10. Karagodin V.P., Bobryshev Yu.V., Orekhov AN. Inflammation, immune cells, cytokines – role in atherogenesis. Pathogenesis. 2014;12(1):21–35.
11. Pigarevsky P.V., Maltseva S.V., Snegova V.A., Davydova N.G.,Yakovleva O.G., Vorozhbit R.A. The role of interleukin-8 and T-lymphocytes in atherosclerotic plaque destabilization in humans. Medical academic journal. 2016;16(2):51–5.
12. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nature Reviews Immunology. 2005;5(12):953–64. DOI: 10.1038/nri1733
13. Chinetti-Gbaguidi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nature Reviews Cardiology. 2015;12(1):10–7. DOI: 10.1038/nrcardio.2014.173
14. Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV. How do macrophages sense modified low-density lipoproteins? International Journal of Cardiology. 2017;230:232–40. DOI: 10.1016/j.ijcard.2016.12.164
15. Gleissner CA, Shaked I, Erbel C, Böckler D, Katus HA, Ley K. CXCL4 Downregulates the Atheroprotective Hemoglobin Receptor CD163 in Human Macrophages. Circulation Research. 2010;106(1):203–11. DOI: 10.1161/CIRCRESAHA.109.199505
16. Pigarevsky P.V., Maltseva S.V., Voskanyants A.N., Seliverstova V.G., Snegova V.A. Morphometric investigation of Th1 and Th2cells in the vessel wall in human atherogenesis. Cytokines and Inflammation. 2010;9(1):13–6.
17. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Frontiers in Bioscience: A Journal and Virtual Library. 2008;13:453–61. PMID: 17981560
18. Pigarevsky P. V., Maltseva S. V., Snegova V. A. Progressive atherosclerotic lesions in humans. Morphological and immunoinflammatory aspects. Cytokines and Inflammation. 2013;12(1–2):5–12.
19. Pigarevsky P.V., Maltseva S.V., Snegova V.A., Davydova N.G., Yakovleva O.G., Vorozhbit R.A. The role of matrix metalloproteinase type 1 and in the destabilization of atherosclerotic plaque in humans. Medical academic journal. 2015;15(4):54–8.
20. Ragino Yu.I., Chernyavsky A.M., Volkov A.M., Voevoda M.I. Factors and mechanisms of instability atherosclerotic plaques. - Novosibirsk: Nauka; 2008. 88p.ISBN 978-5-02-023256-3
21. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71. PMID: 7634481
22. Pigarevsky P.V., Snegova V.A., Maltseva S.V., Davydova N.G. T lymphocytes and macrophages in unstable atherosclerotic lesions in humans. Cytokines and Inflammation. 2015;14(2):84–7.
23. Pasterkamp G, Schoneveld AH, van der Wal AC, Hijnen DJ, van Wolveren WJ, Plomp S et al. Inflammation of the atherosclerotic cap and shoulder of the plaque is a common and locally observed feature in unruptured plaques of femoral and coronary arteries. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19(1):54–8. PMID: 9888866
24. Stöger JL, Gijbels MJJ, van der Velden S, Manca M, van der Loos CM, Biessen EAL et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–8. DOI: 10.1016/j.atherosclerosis.2012.09.013
25. De Paoli F, Staels B, Chinetti-Gbaguidi G. Macrophage phenotypes and their modulation in atherosclerosis. Circulation Journal: Official Journal of the Japanese Circulation Society. 2014;78(8):1775–81. PMID: 24998279
26. Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clinical Science (London, England: 1979). 2003;104(1):27–38. PMID: 12519085
27. Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C et al. Coronary Atherosclerosis Is Associated With Macrophage Polarization in Epicardial Adipose Tissue. Journal of the American College of Cardiology. 2011;58(3):248–55. DOI: 10.1016/j.jacc.2011.01.048
28. Shioi A, Ikari Y. Plaque Calcification During Atherosclerosis Progression and Regression. Journal of Atherosclerosis and Thrombosis. 2018;25(4):294–303. DOI: 10.5551/jat.RV17020
29. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR et al. Identification of a Novel Macrophage Phenotype That Develops in Response to Atherogenic Phospholipids via Nrf2. Circulation Research. 2010;107(6):737–46. DOI: 10.1161/CIRCRESAHA.109.215715
30. Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ et al. Activating Transcription Factor 1 Directs Mhem Atheroprotective Macrophages Through Coordinated Iron Handling and Foam Cell Protection. Circulation Research. 2012;110(1):20–33. DOI: 10.1161/CIRCRESAHA.111.247577
31. Erbel C, Tyka M, Helmes CM, Akhavanpoor M, Rupp G, Domschke G et al. CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7 + S100A8 + in vitro and in vivo. Innate Immunity. 2015;21(3):255–65. DOI: 10.1177/1753425914526461
32. Gleissner CA, von Hundelshausen P, Ley K. Platelet Chemokines in Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(11):1920–7. DOI: 10.1161/ATVBAHA.108.169417
33. Sachais BS, Turrentine T, Dawicki McKenna JM, Rux AH, Rader D, Kowalska MA. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thrombosis and Haemostasis. 2007;98(5):1108–13. PMID: 18000617
Review
For citations:
Pigarevsky P.V., Snegova V.A., Nazarov P.G. Macrophages and Their Role in Destabilization of an Atherosclerotic Plaque. Kardiologiia. 2019;59(4):88-91. (In Russ.) https://doi.org/10.18087/cardio.2019.4.10254