ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Automatic detection of ventricular and supraventricular wide QRS arrhythmias using complex of morphological criteria and algorithms

https://doi.org/10.18087/cardio.2659

Abstract

Aim. The aim of study is a detection of ventricular and supraventricular wide QRS arrhythmias using complex of morphological criteria and algorithms by method of automatic analysis. Materials and methods. For 100 patients (m/f – 61/39, Me (min; max) – 44.5 (10; 85) years) of researched group the analysis of 14306 single wide ectopic complexes (QRS 120–230 ms) has been done. Wide complexes include 11028 (77%) ventricular complexes and 3278 (23%) supraventricular complexes represented by 145 different forms of QRS. For verification of arrhythmias origin transesophageal ECG recording and endocardial electrophysiological study were done. The control group included 59 patients (m/f – 25/34, Me (min; max) – 49.5 (14,85) years) with 720 wide QRS, including 467 (65%) ventricular and 253 (35%) supraventricular complexes represented by 86 forms of QRS. The criteria Drew B.J., Scheinman M.M. (1995); Wellens H.J. (1978), RWPT II (Pava LF, 2010) and the algorithms of Brugada P. (1991); Bayesian (2000); Vereckei A. (2008) were used to evaluate sensitivity, specificity and diagnostic accuracy of wide QRS complexes recognition one by one and together, using the method of Wald sequential automatic analysis (KT Result3, CJSC INCART, Russia) and method of artificial neural networks. Results. The best results for the detection of ventricular arrhythmias algorithms were demonstrated by the  Brugada  P., Drew  B.J., Scheinman  M.M. algorithm (sensitivity 86.43%, specificity 66.73%, diagnostic accuracy 82.14% in the study group, sensitivity 81.80%, specificity 73.12%, diagnostic accuracy 78.75% in the control group), and the Bayesian algorithm (sensitivity 87.81%, specificity 73.62%, diagnostic accuracy 84.72% in the study group, sensitivity 83.30%, specificity 77.08%, diagnostic accuracy 81.11% in the control group). A complex analysis of the Wald method recognized ventricular arrhythmias in the research group with sensitivity 83.11%, specificity 83.65%, diagnostic accuracy 83.23% and in the control group with a sensitivity 83.51%, specificity of 84.58% and diagnostic accuracy 83.89%. Artificial neural networks recognized ventricular arrhythmias with sensitivity 91.43%, specificity 91.30% and diagnostic accuracy 91.39% in the control group and with sensitivity 97.06%, specificity 99.39% and diagnostic accuracy 97.6% in the research group. Conclusion. Automatic analysis allows obtaining simultaneously the results of each algorithms/criteria and in combination. It significantly reduces the doctor’s work in assessing of amplitude-time characteristics of the complexes. Using artificial neural networks increases the accuracy of of ventricular and supraventricular arrhythmias recognition.

About the Authors

M. A. Budanova
Almazov Federal Medical Research Centre, Akkuratova, 2, St. Petersburg 197341
Russian Federation


M. P. Chmelevsky
Almazov Federal Medical Research Centre, Akkuratova, 2, St. Petersburg 197341; EP Solutions SA, Av. des Sciences, 13, Yverdon-les-Bains, Switzerland
Russian Federation


T. V. Treshkur
Almazov Federal Medical Research Centre, Akkuratova, 2, St. Petersburg 197341
Russian Federation


A. V. Aseev
Institute of Cardiological Technics (INCART), Vyborg highway, 22A, St. Petersburg 194214
Russian Federation


V. M. Tikhonenko
Institute of Cardiological Technics (INCART), Vyborg highway, 22A, St. Petersburg 194214; Scientific, Clinical and Educational Cardiology Center, University Embankment 7–9, St. Petersburg 194214
Russian Federation


References

1. Marriott HJL, Sandler IA. Criteria, old and new, for differentiating between ectopic ventricular beats and aberrant ventricular conduction in the presence of atrial fibrillation. Progress in Cardiovascular Diseases. 1966;9(1):18–28. DOI: 10.1016/ S0033-0620(66)80019-1

2. Stewart RB, Bardy GH, Greene HL. Wide complex tachycardia: misdiagnosis and outcome aſter emergent therapy. Annals of Internal Medicine. 1986;104(6):766–71. PMID: 3706928

3. Wellens HJ. The wide QRS tachycardia. Annals of Internal Medicine. 1986;104(6):879. PMID: 3593468

4. Brugada P, Brugada J, Mont L, Smeets J, Andries EW. A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex. Circulation. 1991;83(5):1649–59. PMID: 2022022

5. Drew BJ, Scheinman MM. ECG criteria to distinguish between aberrantly conducted supraventricular tachycardia and ventricular tachycardia: practical aspects for the immediate care setting. Pacing and clinical electrophysiology: PACE. 1995;18(12 Pt 1):2194–208. PMID: 8771133

6. Griffith MJ, de Belder MA, Linker NJ, Ward DE, Camm AJ. Multivariate analysis to simplify the differential diagnosis of broad complex tachycardia. British Heart Journal. 1991;66(2):166–74. PMID: 1883669

7. Griffith MJ, Garratt CJ, Mounsey P, Camm AJ. Ventricular tachycardia as default diagnosis in broad complex tachycardia. Lancet (London, England). 1994;343(8894):386–8. PMID: 7905552

8. Lau EW, Pathamanathan RK, Ng GA, Cooper J, Skehan JD, Griffith MJ. The Bayesian approach improves the electrocardiographic diagnosis of broad complex tachycardia. Pacing and clinical electrophysiology: PACE. 2000;23(10 Pt 1):1519–26. PMID: 11060873

9. Jastrzebski M, Kukla P, Czarnecka D, Kawecka-Jaszcz K. Comparison of five electrocardiographic methods for differentiation of wide QRS-complex tachycardias. EP Europace. 2012;14(8):1165–71. DOI: 10.1093/europace/eus015

10. Pava LF, Perafán P, Badiel M, Arango JJ, Mont L, Morillo CA et al. R-wave peak time at DII: A new criterion for differentiating between wide complex QRS tachycardias. Heart Rhythm. 2010;7(7):922–6. DOI: 10.1016/j.hrthm.2010.03.001

11. Vereckei A, Duray G, Szenasi G, Altemose GT, Miller JM. Application of a new algorithm in the differential diagnosis of wide QRS complex tachycardia. European Heart Journal. 2006;28(5):589–600. DOI: 10.1093/eurheartj/ehl473

12. Vereckei A, Duray G, Szénási G, Altemose GT, Miller JM. New algorithm using only lead aVR for differential diagnosis of wide QRS complex tachycardia. Heart Rhythm. 2008;5(1):89–98. DOI: 10.1016/j. hrthm.2007.09.020

13. Wellens HJJ, Bär FW, Vanagt EJ, Brugada P, Farré J. The Differentiation between Ventricular Tachycardia and Supraventricular Tachycardia with Aberrant Conduction: The Value of the 12-Lead Electrocardiogram. In: Wellens HJJ. Kulbertus HE, eds. What’s New in Electrocardiography? The Hague: Martinus Nijhoff, 1981:184-199. DOI: 10.1007/978-94-009-8239-0_11. In: What’s New in Electrocardiography Wellens HJJ, Kulbertus HE, editors -Dordrecht: Springer Netherlands;

14. Alzand BSN, Crijns HJGM. Diagnostic criteria of broad QRS complex tachycardia: decades of evolution. Europace. 2011;13(4):465–72. DOI: 10.1093/europace/euq430

15. The “Minnesota Code” for ECG classification. Adaptation to CR leads and modification of the code for ECGs recorded during and aſter exercise by the Scandinavian Committee on ECG Classification. Acta Medica Scandinavica. Supplementum. 1967;481:1–26. PMID: 5241466

16. Gubler E. V., Genkin A. A. Application of non-parametric statistics criteria in biomedical research. 2-nd edition. – L.: Meditsina; 141 p. [Russian: Гублер Е. В., Генкин А. А. Применение непараметрических критериев статистики в медико-биологических исследованиях. Издание 2-е. – Л.: Медицина, 1973. – 141с]


Review

For citations:


Budanova M.A., Chmelevsky M.P., Treshkur T.V., Aseev A.V., Tikhonenko V.M. Automatic detection of ventricular and supraventricular wide QRS arrhythmias using complex of morphological criteria and algorithms. Kardiologiia. 2019;59(3S):36-42. (In Russ.) https://doi.org/10.18087/cardio.2659

Views: 1493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)