ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Intracellular Molecular Mechanisms of Adrenergic Regulation of Pulmonary Vein Myocardium Membrane Potential

https://doi.org/10087/cardio.2017.11.10052

Abstract

Pulmonary vein (PV) myocardium is characterized by numerous electrophysiological properties which make this tissue highly prone to spontaneous, ectopic activity partially due to resting potential (RP) instability. PV derived ectopy frequently underlies supraventricular arrhythmias, including atrial fibrillation. It has also been demonstrated that adrenergic stimulation causes proarrhythmic alterations in PV. Selective α1- and β-adrenoreceptors stimulation causes RP depolarization and hyperpolarization, respectively, at least in rats. The intracellular mechanisms of α1- and β-adrenoreceptors-dependent RP drifts are not investigated. Adenylate cyclase (AC) activator forscolin similarly to selective β-adrenoreceptors agonist isoproterenol (ISO) induced strong hyperpolarization in quiescent isolated perfused multicellular preparations of rat PV. Maximal value of hyperpolarization in PV was equal after application of both compounds. Proteinkinase A (PKA) inhibitors КТ5720, H-89 and Rp-adenosine-cAMP suppressed ISO-induced hyperpolarization in PV. Inhibitors of phospholipase C (U73122) or D (FIPI), similarly to proteinkinase C (PKC) inhibitor chelerythrine, failed to suppress α1-adrenoreceptors-dependent phenylephrine-induced depolarization in rat PV myocardium. These results allow us to suggest that ß-adrenoreceptors-dependent RP hyperpolarization in quiescent rat PV myocardium is only partially mediated by cAMP-dependent signal transduction pathway and by PKA. Besides, PKA-independent mechanisms also contribute to β-agonists effects in PV. In addition, α-adrenoreceptors-dependent depolarization in rat PV myocardium could be independent on PLC and PKC.

About the Authors

V. M. Karimova
Lomonosov Moscow State University
Russian Federation


V. S. Kuzmin
Lomonosov Moscow State University; National Medical Research Center for Cardiology
Russian Federation


L. V. Rosenshtraukh
National Medical Research Center for Cardiology
Russian Federation


References

1. Masani F. Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J. Anat 1986;145:133-142.

2. Haissaguerre M., Jais P., Shah D. C. Spontaneous initiation of AF by ectopic beats originating in the pulmonary veins. N. Engl J. Med 1998;339:659-66.

3. Doisne N., Maupoil V., Cosnay P., Findlay I. Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein. Am J. Physiol Heart Circ Physiol 2009;297:102-108.

4. Chen Y. J., Chen S. A., Chang M. S., Lin C. I. Arrhythmogenic activity of cardiac muscle in pulmonary vein 3s of the dog: Implication for the genesis of atrial fibrillation. Cardiovasc Res 2000;48:265-273.

5. Cheung D. W. Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J. Physiol 1980;314;:445-456.

6. Tsuneoka Y., Kobayashi Y., Honda Y. et al. Electrical activity of the mouse pulmonary vein myocardium. J. Pharmacol Sci 2012;119:287-292.

7. Maupoil V., Bronquard C., Freslon J. L. et al. Ectopic activity in the rat pulmonary vein can arise from simultaneous activation of alpha,- and beta1-adrenoceptors. Br J. Pharmacol 2007;150:899-905.

8. Бернгардт Э. Р. Роль автономной нервной системы в развитии фибрилляции предсердий. Бюллетень федерального центра сердца, крови и эндокринологии им. В. А. Алмазова 2011;1:68-71.

9. Ehrlich J. R., Cha T. J., Zhang L. et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J. Physiol 2003;551:801-813.

10. Heijman J., Voigt N., Nattel S., Dobrev D. Cellular and Molecular Electrophysiology of Atrial Fibrillation Initiation, Maintenance, and Progression. Circ Res 2014;114:1483-1499.

11. Tan A. Y., Li H., Wachsmann-Hogiu S. et al. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. J. Am Coll Cardiol 2006;48:132-143.

12. Кузьмин В. С., Абрамочкин Д. В., Сухова Г. С., Ашмарин И. П. Изучение рецепторных механизмов действия АДФ-рибозы в сердце крысы. Нейрохимия 2008;2:23-32.

13. Кузьмин В. С., Абрамочкин Д. В., Сухова Г. С., Розенштраух Л. В. Влияние АДФ-рибозы, АМФ и аденозина на электрическую активность в предсердии и папиллярной мышцы гибернирующего суслика. Кардиология 2008;48:53-60.

14. Saucerman J.J., McCulloch A. D. Cardiac beta-adrenergic signaling: from subcellular microdomains to heart failure. Ann N Y Acad Sci 2006;1080:348-361.

15. Xiao R., Zhu W., Zheng M. et al. Subtype-specific α1- and β-adrenoceptor signaling in the heart. Trends in Pharmacological Sciences 2006;27:330-337.

16. Clapham D. E. Direct G protein activation of ion channels. Annu Rev Neurosci 1994;17:441-464.

17. Fischmeister R., Castro L. R., Abi-Gerges A. et al. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 2006;99:816-828.

18. St Clair J. R., Liao Z., Larson E. D., Proenza C. PKA-independent activation of I (f) by cAMP in mouse sinoatrial myocytes. Channels (Austin) 2013;7:318-321.

19. Cui J., Melman Y., Palma E. et al. Cyclic AMP regulates the HERG K(+) channel by dual pathways. Curr Biol 2000;10:671-674.

20. Seino S., Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005;85:-1303-1342.

21. O'Connell T. D., Jensen B. C., Baker A.J., Simpson P. C. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 2013;66:308-333.

22. Steinberg S. F. Cardiac actions of protein kinase C isoforms. Physiology (Bethesda) 2012;27:130-139.

23. Mier K., Kemken D., Katus H. A. et al. Adrenergic activation of cardiac phospholipase D: role of alpha(1) - adrenoceptor subtypes. Cardiovasc Res 2002;54:133-139.

24. Balboa M. A., Insel P. A. Stimulation of phospholipase D via alpha1-adrenergic receptors in Madin-Darby canine kidney cells is independent of PKCalpha and -epsilon activation. Mol Pharmacol 1998;53:221-227.

25. Li L., Zhang X. Differential inhibition of the TRPM8 ion channel by Gaq and Ga 11. Channels (Austin) 2013;7:115-118.

26. Chen X., Talley E. M., Patel N. et al. Inhibition of a background potassium channel by Gq protein alpha-subunits. Proc Natl Acad Sci 2006;103:3422-3427.

27. Anumonwo J. M., Lopatin A. N. Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 2010;48:45-54.

28. Cohen N. A., Sha Q, Makhina E. N. et al. Inhibition of an inward rectifier potassium channel (Kir2.3) by G-protein bg Subunits. J Biol Chem 1996;271:32301-32305.

29. Duan D., Fermini B., Nattel S. Alpha-adrenergic control of volumeregulated Cl-currents in rabbit atrial myocytes. Characterization of a novel ionic regulatory mechanism. Circ Res 1995;77:379-393.

30. Walsh K. B. Activation of a heart chloride current during stimulation of protein kinase C. Mol Pharmacol 1991;40:342-346.

31. Ehrlich J. R., Cha T.-J., Zhang L. et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol 2003;551:801-813.

32. Melnyk P., Ehrlich J. R., Pourrier M. et al. Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc Res 2005;65:104-116.


Review

For citations:


Karimova V.M., Kuzmin V.S., Rosenshtraukh L.V. Intracellular Molecular Mechanisms of Adrenergic Regulation of Pulmonary Vein Myocardium Membrane Potential. Kardiologiia. 2017;57(11):34-41. (In Russ.) https://doi.org/10087/cardio.2017.11.10052

Views: 1060


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)