Early changes of energy metabolism, isoformic content and level of titin phosphorylation at diastolic dysfunction
https://doi.org/10.18087/cardio.2020.3.n531
Abstract
Relevance. Diastolic dysfunction occurring at hypertension, obesity, diabetes, or treatment with doxorubicin tends to prevail in all patterns of chronic heart failure. Lack of effective therapy forces to look more into the metabolic processes in cardiomyocytes.
Objective. Assess energy metabolism in cardiomyocytes and changes in titin, a giant myofibril protein that responsible for their elasticity.
Material and Methods. The study model was cardiomyopathy occurring after the 4-week administration of doxorubicin (2 mg/kg weekly). Diastolic dysfunction was identified by echocardiography and catheterization with the simultaneous measurement of pressure and volume of the left ventricle (LV).
Results. The levels of adenine nucleotides and phosphocreatine in the heart of animals treated with doxorubicin differed little from the normal values, but lactate levels were increased manifold. A 50% increase in the level of titin phosphorylation was detected, which correlated (r = 0,94) with a nearly twofold increase in the share of a more elastic N2BA-isoform of this protein.
Conclusion. This form of diastolic dysfunction involves the activation of anaerobic metabolism and increased stretching of myofibrils facilitating LV filling.
About the Authors
V. L. LakomkinRussian Federation
Lakomkin Vladimir, Moscow
A. A. Abramov
Russian Federation
Moscow
I. M. Studneva
Russian Federation
Moscow
A. D. Ulanova
Russian Federation
Pushchino, Moscow Region
I. M. Vikhlyantsev
Russian Federation
Pushchino, Moscow Region
A. V. Prosvirnin
Russian Federation
Moscow
E. V. Lukoshkova
Russian Federation
Moscow
V. I. Kapelko
Russian Federation
Moscow
References
1. Ageev F. T. Diastolic heart failure: 10 years of knowlege. Russian Heart Failure Journal. 2010;11 (1):69–76. in Russ.
2. Van Heerebeek L, Borbély A, Niessen HWM, Bronzwaer JGF, van der Velden J, Stienen GJM et al. Myocardial Structure and Function Differ in Systolic and Diastolic Heart Failure. Circulation. 2006;113(16):1966–73. DOI: 10.1161/CIRCULATIONAHA.105.587519
3. Gladden JD, Linke WA, Redfield MM. Heart failure with preserved ejection fraction. Pflügers Archiv European Journal of Physiology. 2014;466(6):1037–53. DOI: 10.1007/s00424-014-1480-8
4. Yeh ETH, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C et al. Cardiovascular Complications of Cancer Therapy: Diagnosis, Pathogenesis, and Management. Circulation. 2004;109(25):3122–31. DOI: 10.1161/01.CIR.0000133187.74800.B9
5. Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. IJC Heart & Vasculature. 2016; 10:17–24. DOI: 10.1016/j.ijcha.2015.11.004
6. Lakomkin V.L., Abramov A.A., Gramovich V.V., Vyborov O.N., Lukoshkova E.V., Ermishkin V.V. et al. Relationship between diastolic and systolic myocardial dysfunction at doxorubicin cardiomyopathy. Russian Cardiology Bulletin. 2018;13 (2):48–52. in Russ.
7. Lakomkin V.L., Abramov A.A., Gramovich V.V., Vyborov O.N., Lukoshkova E.V., Ermishkin V.V. et al. The Time Course of Formation of Systolic Dysfunction of the Heartin Doxorubicin Cardiomyopathy. Kardiologiia. 2017;57 (1):59–64. in Russ.
8. Studneva I.M., Lakomkin V.L., Prosvirnin A.V., Abramov A.A., Veselova O.M., Pisarenko O.I. et al. Energy state of myocardium in systolic dysfunction. Russian Cardiology Bulletin. 2018;13(3):31–4. in Russ. DOI: 10.17116/Cardiobulletin20181303131
9. Linke W. Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovascular Research. 2008;77(4):637–48. DOI: 10.1016/j.cardiores.2007.03.029
10. Guo W, Sun M. RBM20, a potential target for treatment of cardiomyopathy via titin isoform switching. Biophysical Reviews. 2018;10(1):15–25. DOI: 10.1007/s12551-017-0267-5
11. Yakupova E.I., Vikhlyantsev I.M., Lobanov M.Y., Galzitskaya O.V., Bobylev A. G. Amyloid properties of titin. Biochemistry (Moscow). 2017;82 (13):1675–85. in Russ. DOI: 10.1134/S0006297917130077
12. Neagoe C, Opitz CA, Makarenko I, Linke WA. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. Journal of Muscle Research and Cell Motility. 2003;24(2–3):175–89. DOI: 10.1023/A:1026053530766
13. Bergmeyer HU, Gawehn K. Methods of enzymatic analysis. Volume 2. – Weinheim; New York: Verlag Chemie ; Academic Press;1974. – 2127–2131 p. ISBN 978-0-323-16137-4
14. Vikhlyantsev IM, Podlubnaya ZA. Nuances of electrophoresis study of titin/connectin. Biophysical Reviews. 2017;9(3):189–99. DOI: 10.1007/s12551-017-0266-6
15. Hamdani N, Herwig M, Linke WA. Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophysical Reviews. 2017;9(3):225–37. DOI: 10.1007/s12551-017-0263-9
16. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK et al. Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts. Circulation Research. 2004;95(7):708–16. DOI: 10.1161/01.RES.0000143901.37063.2f
17. Hamdani N, Bishu KG, von Frieling-Salewsky M, Redfield MM, Linke WA. Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovascular Research. 2013;97(3):464–71. DOI: 10.1093/cvr/cvs353
18. Bell SP, Nyland L, Tischler MD, McNabb M, Granzier H, LeWinter MM. Alterations in the Determinants of Diastolic Suction During Pacing Tachycardia. Circulation Research. 2000;87(3):235–40. DOI: 10.1161/01.RES.87.3.235
19. Wu Y, Bell SP, Trombitas K, Witt CC, Labeit S, LeWinter MM et al. Changes in Titin Isoform Expression in Pacing-Induced Cardiac Failure Give Rise to Increased Passive Muscle Stiffness. Circulation. 2002;106(11):1384–9. DOI: 10.1161/01.CIR.0000029804.61510.02
Review
For citations:
Lakomkin V.L., Abramov A.A., Studneva I.M., Ulanova A.D., Vikhlyantsev I.M., Prosvirnin A.V., Lukoshkova E.V., Kapelko V.I. Early changes of energy metabolism, isoformic content and level of titin phosphorylation at diastolic dysfunction. Kardiologiia. 2020;60(2):4-9. https://doi.org/10.18087/cardio.2020.3.n531