ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Morphofunctional Features of The Diaphragm in Patients With Chronic Heart Failure

https://doi.org/10.18087/cardio.2019.1.2625

Abstract

Aim: to study changes in the volumes of muscle, fat, and connective tissue in postmortem issue samples (autoptates) from diaphragm, right ventricle, lower limb (gastrocnemius muscle), as well as morphological changes of the diaphragm muscular structure in patients with different functional classes of heart failure (HF), and to compare them with some intravital parameters of external respiration (with maximal inspiratory pressure and its amplitude simultaneously measured by ultrasound method in particular). Materials and methods. Autoptates of the diaphragm muscle, right ventricle, lower limb (n=39) from 20 men and 19 women (with in vivo diagnosis CHF NYHA functional class (FC) I-IV, hypertension, ischemic heart disease) were examined within 24 hours after the fatal outcome. Light optical microscopy was used to assess the percentages of muscle, connective, adipose tissue, numbers of fibroblasts, and collagen fibers. Spirometric measurements, measurement of respiratory muscles strength, and examination of the diaphragm contractile function were performed by echolocation 56.7±11.9 days before death. Results. In patients of all NYHA FCs most pronounced changes of volume of muscle tissue were observed in the right ventricle and diaphragm, while less pronounced – in the gastrocnemius muscle. The increase in the volume of adipose tissue in patients with I-III FC CHF was most pronounced in the right ventricle and diaphragm, and less pronounced – in the gastrocnemius muscle. The greatest increase in the adipose tissue volume was recorded in the diaphragm of patients with IV FC. Changes of connective tissue volume did not follow linear dependence. The largest “leap-like” increase in the volume of connective tissue occurred in the diaphragm of patients with III FC, what significantly outstripped this process in peripheral muscles and right ventricular myocardium. There was stable relationship between structure of tissue of the diaphragm, maximal inspiratory thickness of diaphragmatic muscle, and maximal inspiratory pressure. This relation (correlation) was positive for pairs muscle tissue volume – muscle thickness and muscle tissue volume – inspiratory pressure, and negative for pairs connective tissue volume – muscle thickness, connective tissue volume - inspiratory pressure, adipose tissue volume - inspiratory pressure (r>0.85, p<0.01 for all these correlations). Conclusion. Morphofunctional changes in the diaphragm are caused by progressive decrease in the content of muscle tissue, increases of volumes of adipose and connective tissues. These changes correlate with the CHF FC, maximal inspiratory thickness of diaphragmatic muscle, and maximal inspiratory pressure. Severity of these morphological changes is maximal in patients with FC III CHF.

About the Authors

A. G. Arutyunov
Pirogov Russian National Research Medical University
Russian Federation
Moscow


K. V. Ilyina
Pirogov Russian National Research Medical University; City Hospital № 4
Russian Federation
Moscow


G. P. Arutyunov
Pirogov Russian National Research Medical University
Russian Federation
Moscow


E. A. Kolesnikova
Pirogov Russian National Research Medical University
Russian Federation
Moscow


V. V. Pchelin
City Hospital № 4
Russian Federation
Moscow


N. P. Kulagina
City Hospital № 4
Russian Federation
Moscow


D. S. Tokmin
IPT Medicine
Russian Federation
Moscow


E. V. Tulyakova
City Hospital № 4
Russian Federation
Moscow


References

1. Elliott J.E., Greising S.M., Mantilla C.B., Sieck G.C. Functional impact of sarcopenia in respiratory muscles. Respir Physiol Neurobiol 2015 DOI: 10.1016/j.resp.2015.10.001.

2. Cacciani N., Ogilvie H., Larsson L. Age related differences in diaphragm muscle fiber response to mid/long term controlled mechanical ventilation. Exp Gerontol 2014;59:28–33. DOI: 10.1016/j.exger.2014.06.017.

3. Sieck G.C., Ferreira L.F., Reid M.B., Mantilla C.B. Mechanical properties of respiratory muscles. Compr Physiol 2013;3(4):1553– 1567. DOI: 10.1002/cphy.c130003.

4. Hooijman P.E., Beishuizen A., Witt C.C. et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med 2015;191(10):1126–1138. DOI: 10.1164/rccm.201412-2214OC.

5. Lindsay D.C., Lovegrove C.A., Dunn M.J. et al. Histological abnormalities of muscle from limb, thorax and diaphragm in chronic heart failure. Eur Heart J 1996;17(8):1239–1250.

6. Stassijns G., Lysens R., Decramer M. Peripheral and respiratory muscles in chronic heart failure. Eur Respir J 1996;9(10):2161–2167.

7. Kinugawa S., Takada S., Matsushima S. et al. Skeletal muscle abnormalities in heart failure. Int Heart J 2015;56:475–484.

8. Arutyunov A. G., Rylova A. K., Arutyunov G. P. The register of hospitalized patients with circulatory decompensation (Pavlovsky register). First report. Modern clinical characteristics of patients with circulatory decompensation. Clinical phenotypes of patients. Heart Failure J 2014;15;1(82):23–32. Russian (Арутюнов А. Г., Рылова А. К., Арутюнов Г. П. Регистр госпитализированных пациентов с декомпенсацией кровообращения (Павловский регистр). Сообщение 1. Современная клиническая характеристика пациента с декомпенсацией кровообращения. Клинические фенотипы пациентов. Журнал Сердечная недостаточность 2014;15;1(82):23–32.)

9. Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society. Am Rev Respir Dis 1991;144:1202–1218.

10. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624.

11. Black L.F., Hyatt R.E. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis 1969;99:696–702.

12. Obando L.M.G., López A.L., Ávila C.L. Normal values of the maximal respiratory pressures in healthy people older than 20 years old in the City of Manizales – Colombia Colomb Med (Cali) 2012;43(2):119–125.

13. Steier J., Kaul S., Seymour J. et al. The value of multiple tests of respiratory muscle strength. Thorax 2007;62(11):975–980. DOI: 10.1136/thx.2006.072884.

14. Enright P.L., Adams A.B., Boyle P.J., Sherrill D.L. Spirometry and maximal respiratory pressure references from healthy Minnesota 65- to 85-year-old women and men. Chest 1995;108(3):663–669.

15. Enright P.L., Kronmal R.A., Manolio T.A. et al. Respiratory muscle strength in the elderly. Correlates and reference values. Cardiovascular Health Study Research Group. Am J Respir Crit Care Med 1994;149(2 Pt 1):430–438. DOI: 10.1164/ajrccm.149.2.8306041.

16. Tolep K., Higgins N., Muza S. et al. Comparison of diaphragm strength between healthy adult elderly and young men. Am J Respir Crit Care Med 1995;152(2):677–682. DOI: 10.1164/ajrccm.152.2.7633725.

17. Dall’ago P., Chiappa G.R., Guths H. et al. Inspiratory muscle training in patients with heart failure and inspiratory muscle weakness: a randomized trial. J Am Coll Cardiol 2006;47(4):757–763.

18. Ribeiro J.P., Chiappa G.R., Neder J.A., Frankenstein L. Respiratory muscle function and exercise intolerance in heart failure. Curr Heart Fail Rep 2009;6(2):95–101.

19. Tager T., Schell M., Cebola R. et al. Biological variation, reference change value (RCV) and minimal important difference (MID) of inspiratory muscle strength (PImax) in patients with stable chronic heart failure. Clin Res Cardiol 2015;104(10):822–830. DOI: 10.1007/s00392-015-0850-3.

20. Yamada K., Kinugasa Y., Sota T. et al. Inspiratory Muscle Weakness is Associated With Exercise Intolerance in Patients With Heart Failure With Preserved Ejection Fraction: A Preliminary Study. J Card Fail 2016;22(1):38–47. DOI: 10.1016/j.cardfail.2015.10.010.

21. Mancini D.M., Henson D., LaManca J., Levine S. Respiratory muscle function and dyspnea in patients with chronic congestive heart failure. Circulation 1992;86 (3):909–918.

22. Manning H.L., Schwartzstein R.M. Pathophysiology of dyspnea. N Engl J Med 1995;333(23):1547–1553.

23. Woods P.R., Olson T.P., Frantz R.P., Johnson B.D. Causes of breathing inefficiency during exercise in heart failure. J Card Fail 2010;16(10):835–842. DOI: 10.1016/j.cardfail.2010.05.003.S1071-9164(10)00209-5 [pii]

24. Ponikowski P., Francis D.P., Piepoli M.F. et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation 2001;103 (7):967–972.

25. Mor A., Thomsen R.W., Ulrichsen S.P., Sorensen H.T. Chronic heart failure and risk of hospitalization with pneumonia: a population-based study. Eur J Intern Med 2013;24(4):349–353. DOI: 10.1016/j.ejim.2013.02.013.S0953-6205(13)00079-4 [pii]

26. Cahalin L.P., Arena R., Guazzi M. et al. Inspiratory muscle training in heart disease and heart failure: a review of the literature with a focus on method of training and outcomes. Expert Rev Cardiovasc Ther 2013;11(2):161–177. DOI: 10.1586/erc.12.191.

27. Kawauchi T.S., Umeda II.K., Braga L.M. et al. Is there any benefit using low-intensity inspiratory and peripheral muscle training in heart failure? A randomized clinical trial. Clin Res Cardiol 2017;106(9):676–685. DOI: 10.1007/s00392-017-1089-y

28. Souza H., Rocha T., Pessoa M. et al. Effects of inspiratory muscle training in elderly women on respiratory muscle strength, diaphragm thickness and mobility. J Gerontol A Biol Sci Med Sci 2014;69(12):1545–1553. DOI: 10.1093/gerona/glu182.


Review

For citations:


Arutyunov A.G., Ilyina K.V., Arutyunov G.P., Kolesnikova E.A., Pchelin V.V., Kulagina N.P., Tokmin D.S., Tulyakova E.V. Morphofunctional Features of The Diaphragm in Patients With Chronic Heart Failure. Kardiologiia. 2019;59(1):12-21. (In Russ.) https://doi.org/10.18087/cardio.2019.1.2625

Views: 2428


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)