ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Myocardial Hypoenhancement on Multidetector Computed Tomography in Patients With Non-ST Elevation Acute Coronary Syndrome

https://doi.org/10.18087/cardio.2017.10.10037

Abstract

The purpose of our study was analysis of myocardial hypoenhancement areas (MHAs) found by multidetector computed tomography (MDCT) in patients with non-ST elevation acute coronary syndrome (NSTEACS) and comparison of these findings with results of standard methods of diagnostics of myocardial infarction and ischemia [electrocardiography (ECG) and echocardiography (ECHO)]. Methods. MHAs were found in 18 of 21 patients with non-ST segment elevation myocardial infarction (NSTEMI) (85.7%) and only in 3 of 22 patients with unstable angina (UA) (13.6%, p<0.0l). In patients with NSTEMI MHAs were interpreted as foci of myocardial necrosis while in patients with UA MHAs could represent either undiagnosed myocardial damage or myocardial ischemia. It was shown previously that “ischemic” MHAs disappear after successful revascularization, whereas defects caused by necrosis remain unchanged for many months. Patients with UA and MHAs (n=3) underwent MDCT in 1 year after revascularization. In 1 patient MHA disappeared and in 1 it decreased in size. In these cases, probably, MHAs represented myocardial ischemia where. In the 3-rd patient the defect size remained unchanged and was considered to be a sign of undiagnosed NSTEMI. Most patients with MHAs had ST-segment ECG dynamics (78% of patients with NSTEMI, 66.7% of patients with UA). In all cases, localization of ST-segment deviation on ECG, myocardial wall motion abnormalities at ECHO and MHAs by MDCT coincided. Detection of MHAs and wall motion abnormalities correlated with each other as the frequency of occurrence (r=0.4; p=0.01), and number of segments involved (r =0.7; p<0.05).

About the Authors

Natalia A. Barysheva
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


I. N. Merkulova
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


M. C. Shabanova
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


M. A. Shariya
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


S. A. Gaman
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


T. S. Sukhinina
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


T. N. Veselova
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


M. Ya. Ruda
Institute of Cardiology of Russian Cardiology Scientific and Production Complex
Russian Federation


References

1. Baks T., Cademartiri F., Moelker A.D. et al. Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J. Am Coll Cardiol 2006;48(1):144-152.

2. Zhang L.J., Peng J., Wu S.Y. et al. Dual source dual-energy computed tomography of acute myocardial infarction: correlation with histopathologic findings in a canine model. Invest Radiol 2010;45(6):290-297.

3. Lardo A.C., Cordeiro M.A., Silva C. et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006;113:394-404.

4. Gerber B.L., Belge B., Legros G.J., et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 2006;113(6):823-833.

5. Qayyum A.A., Kühl J.T., Mathiasen A.B. et al. Value of cardiac 320-multidetector computed tomography and cardiac magnetic resonance imaging for assessment of myocardial perfusion defects in patients with known chronic ischemic heart disease. Int J. Cardiovasc Imag 2013;29(7):1585-1593.

6. Gupta M., Kadakia J., Hacioglu Y. et al. Non-contrast cardiac computed tomography can accurately detect chronic myocardial infarction: Validation study. J. Nucl Cardiol 2011;18(1):96-103.

7. Blankstein R., Rogers I.S., Cury R.C. Practical tips and tricks in cardiovascular computed tomography: diagnosis of myocardial infarction. J. Cardiovasc Comput Tomogr 2009;3:104-111.

8. Терновой С.К., Веселова Т.Н., Синицын В.Е. и др). Роль мультиспиральной компьютерной томографии в диагностике инфаркта миокарда. Кардиология 2008; 48(1):4-8.

9. Busch J.L., Alessio A.M., Caldwell J.H. et al. Myocardial hypoenhancement on resting computed tomography angiography images accurately identifies myocardial hypoperfusion. J. Cardiovasc Comput Tomogr 2011;5(6):412-420.

10. Веселова Т. Н., Шитов В. Н., Влодзяновский В. В. и др. Сравнение мультиспиральной компьютерной томографии и стресс-эхокардиографии в оценке жизнеспособности миокарда у больных с острым инфарктом миокарда. Вестник рентгенологии и радиологии 2011;4:24-30.

11. Nagao M., Matsuoka H., Kawakami H. et al. Quantification of myocardial perfusion by contrast-enhanced 64-MDCT: characterization of ischemic myocardium. AJR AmJ Roentgenol 2008;191(1):19-25.

12. Nagao M., Matsuoka H., Kawakami H. et al. Detection of myocardial ischemia using 64-slice MDCT. Circ J. 2009;73(5):905-911.

13. Iwasaki K., Matsumoto T. Myocardial perfusion defect in patients with coronary artery disease demonstrated by 64-multidetector computed tomography at rest. Clin Cardiol 2011;34(7):454-460.

14. Wang Q., Qin J., Gai L.Y. et al. A pilot study on diagnosis of coronary artery disease using computed tomography first-pass myocardial perfusion imaging at rest. J. Zhejiang Univ Sci B. 2011;12(6):485-491.

15. Thomas D.M., Larson C.W., Cheezum M.K. et al. Rest-Only Myocardial CT Perfusion in Acute Chest Pain. South Med J. 2015;108(11):688-694.

16. Leipsic J., Abbara S., Achenbach S. et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J. Cardiovasc Comput Tomogr 2014;8(5):342-358.

17. Kachenoura N., Gaspar T., Lodato J.A. et al. Combined assessment of coronary anatomy and myocardial perfusion using multidetector computed tomography for the evaluation of coronary artery disease. Am J. Cardiol 2009;103(11):1487-1494.

18. Hamm C.W., Bassand J.P., Agewall S. et al.; European Society of Cardiology. [ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC)]. G. Ital Cardiol (Rome) 2012;13(3):171-228.

19. Lang R.M., Bierig M., Devereux R.B., et al.; American Society of Echocardiography's Nomenclature and Standards Committee; Task Force on Chamber Quantification; American College of Cardiology Echocardiography Committee; American Heart Association; European Association of Echocardiography, European Society of Cardiology. Recommendations for chamber quantification. Eur J. Echocardiogr 2006;7(2):79-108.

20. Cerqueira M.D., Weissman N.J., Dilsizian V. et al., American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J. Cardiovasc Imaging 2002;18(1):539-542.

21. Веселова Т.Н., Терновой С.К. Информативность мультиспиральной компьютерной томографии в определении дефекта перфузии миокарда у больных острым инфарктом миокарда. Терапевтический архив 2013;85(4):16-21

22. Lessick J., Ghersin E., Dragu R. et al. Diagnostic accuracy of myocardial hypoenhancement on multidetector computed tomography in identifying myocardial infarction in patients admitted with acute chest pain syndrome.J Comput Assist Tomogr 2007;31(5):780-788.

23. Schepis T., Achenbach S., Marwan M. et al. Prevalence of first-pass myocardial perfusion defects detected by contrast-enhanced dualsource CT in patients with non-ST segment elevation acute coronary syndromes. Eur Radiol 2010;20(7):1607-1614.

24. Nagao M., Matsuoka H., Kawakami H. et al. Myocardial ischemia in acute coronary syndrome: assessment using 64-MDCT. AJR Am J Roentgenol 2009;193(4):1097-1106.

25. Kachenoura N., Lodato J.A., Gaspar T. et al. Value of multidetector computed tomography evaluation of myocardial perfusion in the assessment of ischemic heart disease: comparison with nuclear perfusion imaging. Eur Radiol 2009;19(8):1897-1905.

26. Branch K.R., Busey J., Mitsumori L.M. et al. Diagnostic performance of resting CT myocardial perfusion in patients with possible acute coronary syndrome. AJR AmJ Roentgenol 2013;200(5):W450-457.

27. Pursnani A., Lee A.M., Mayrhofer T. et al. Early resting myocardial computed tomography perfusion for the detection of acute coronary syndrome in patients with coronary artery disease. Circ Cardiovasc Imaging 2015;8(3):e002404.


Review

For citations:


Barysheva N.A., Merkulova I.N., Shabanova M.C., Shariya M.A., Gaman S.A., Sukhinina T.S., Veselova T.N., Ruda M.Ya. Myocardial Hypoenhancement on Multidetector Computed Tomography in Patients With Non-ST Elevation Acute Coronary Syndrome. Kardiologiia. 2017;57(10):5-11. (In Russ.) https://doi.org/10.18087/cardio.2017.10.10037

Views: 1286


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)