Phenotypes of Chronic Heart Failure in Patients with Preserved Ejection Fraction
https://doi.org/10.18087/cardio.2025.10.n3021
Abstract
Chronic heart failure with preserved ejection fraction (CHFpEF) is a common syndrome that leads to adverse outcomes. The syndrome is quite heterogeneous and, according to multiple clinical, genetic, molecular, proteomic, and other studies, varies significantly depending on the predominant pathophysiological mechanism. Currently, modern research methods, such as those for studying proteome, genome, and epicardial regulation, allow a more precise identification of phenotypes. This review focuses on existing concepts on phenotypes in CHFpEF, specifically, aseptic inflammation, myocardial fibrosis, dysmetabolism, and others. Data were searched using the PubMed search by keywords in the 2010-2025 time range using the following tags: HFpEF, phenotypes, proteome, metabolome, inflammation, fibrosis. Currently, a limited number of drugs is available for the treatment of CHFpEF. Potentially, identifying phenotypes in each individual patient will facilitate personalized therapy, such as anti-inflammatory therapy for those with a predominantly inflammatory component, antifibrotic therapy for those with a fibrotic phenotype, etc.
Keywords
About the Authors
M. R. PlotnikovaRussian Federation
Head of the Department of Cardiology, Candidate of Medical Sciences (PhD)
I. A. Mustafina
Russian Federation
Associate Professor, Department of Propaedeutics,
Candidate of Medical Sciences (PhD).
V. S. Shchekin
Russian Federation
Head of the Laboratory of Morphology
N. V. Khabarova
Russian Federation
Assistant Professor, Department of Hospital
Therapy No. 1, Candidate of Medical Sciences (PhD).
Yu. N. Belenkov
Russian Federation
Director of the Clinic of Hospital Therapy No. 1,
Sechenov University; Head of the Department of Hospital Therapy No. 1, Faculty of General Medicine, Sechenov University; Academician of the Russian Academy
of Sciences; Professor, Doctor of Medical Sciences (MD, DSc).
N. Sh. Zagidullin
Russian Federation
Head of the Department of Propaedeutics of
Internal Medicine, Bashkir State Medical University; Director of the Research Institute of Cardiology; Doctor of Medical Sciences (MD, DSc), Professor.
References
1. Galyavich A.S., Tereshchenko S.N., Uskach T.M., Ageev F.T., Aronov D.M., Arutyunov G.P. et al. 2024 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2024;29(11):251–349. DOI: 10.15829/1560-4071-2024-6162
2. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137–46. DOI: 10.1136/hrt.2003.025270
3. Roger VL, Weston SA, Redfeld MM, Hellermann-Homan JP, Killian J, Yawn BP et al. Trends in Heart Failure Incidence and Survival in a Community-Based Population. JAMA. 2004;292(3):344–50. DOI: 10.1001/jama.292.3.344
4. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2023;44(37):3627–39. DOI: 10.1093/eurheartj/ehad195
5. Simmonds SJ, Cuijpers I, Heymans S, Jones EAV. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells. 2020;9(1):242. DOI: 10.3390/cells9010242
6. Lam CSP, Gamble GD, Ling LH, Sim D, Leong KTG, Yeo PSD et al. Mortality associated with heart failure with preserved vs. reduced ejection fraction in a prospective international multi-ethnic cohort study. European Heart Journal. 2018;39(20):1770–80. DOI: 10.1093/eurheartj/ehy005
7. Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R et al. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation. 2020;141(12):1001–26. DOI: 10.1161/CIRCULATIONAHA.119.041886
8. Roh J, Houstis N, Rosenzweig A. Why Don’t We Have Proven Treatments for HFpEF? Circulation Research. 2017;120(8):1243–5. DOI: 10.1161/CIRCRESAHA.116.310119
9. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134(1):73–90. DOI: 10.1161/CIRCULATIONAHA.116.021884
10. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circulation Research. 2019;124(11):1598–617. DOI: 10.1161/CIRCRESAHA.119.313572
11. Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z et al. Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC: Heart Failure. 2020;8(3):172–84. DOI: 10.1016/j.jchf.2019.09.009
12. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O’Meara E et al. Cardiac Structure and Function and Prognosis in Heart Failure With Preserved Ejection Fraction: Findings From the Echocardiographic Study of the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) Trial. Circulation: Heart Failure. 2014;7(5):740–51. DOI: 10.1161/CIRCHEARTFAILURE.114.001583
13. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–55. DOI: 10.1038/nature19949
14. Lu D, Xia Y, Chen Z, Chen A, Wu Y, Jia J et al. Cardiac Proteome Profiling in Ischemic and Dilated Cardiomyopathy Mouse Models. Frontiers in Physiology. 2019;10:750. DOI: 10.3389/fphys.2019.00750
15. Roselló‐Lletí E, Alonso J, Cortés R, Almenar L, Martínez‐Dolz L, Sánchez‐Lázaro I et al. Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue. Journal of Cellular and Molecular Medicine. 2012;16(10):2471–86. DOI: 10.1111/j.1582-4934.2012.01565.x
16. Hahn VS, Petucci C, Kim M-S, Bedi KC, Wang H, Mishra S et al. Myocardial Metabolomics of Human Heart Failure With Preserved Ejection Fraction. Circulation. 2023;147(15):1147–61. DOI: 10.1161/CIRCULATIONAHA.122.061846
17. Hunter WG, Kelly JP, McGarrah RW, Khouri MG, Craig D, Haynes C et al. Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure. Journal of the American Heart Association. 2016;5(8):e003190. DOI: 10.1161/JAHA.115.003190
18. Selvaraj S, Fu Z, Jones P, Kwee LC, Windsor SL, Ilkayeva O et al. Metabolomic Profiling of the Effects of Dapagliflozin in Heart Failure With Reduced Ejection Fraction: DEFINE-HF. Circulation. 2022;146(11):808–18. DOI: 10.1161/CIRCULATIONAHA.122.060402
19. Wang H, Anstrom K, Ilkayeva O, Muehlbauer MJ, Bain JR, McNulty S et al. Sildenafil Treatment in Heart Failure With Preserved Ejection Fraction: Targeted Metabolomic Profiling in the RELAX Trial. JAMA Cardiology. 2017;2(8):896–901. DOI: 10.1001/jamacardio.2017.1239
20. Patel‐Murray NL, Zhang L, Claggett BL, Xu D, Serrano‐Fernandez P, Healey M et al. Aptamer Proteomics for Biomarker Discovery in Heart Failure With Preserved Ejection Fraction: The PARAGONHF Proteomic Substudy. Journal of the American Heart Association. 2024;13(13):e033544. DOI: 10.1161/JAHA.123.033544
21. deFilippi CR, Shah P, Shah SJ, Alemayehu W, Lam CSP, Butler J et al. Proteomics Identify Clinical Phenotypes and Predict Functional Outcomes in Heart Failure With Preserved Ejection Fraction: Insights From VITALITY-HFpEF. Circulation: Heart Failure. 2024;17(9):e011792. DOI: 10.1161/CIRCHEARTFAILURE.124.011792
22. Liu J, Lian H, Yu J, Wu J, Chen X, Wang P et al. Study on diverse pathological characteristics of heart failure in different stages based on proteomics. Journal of Cellular and Molecular Medicine. 2022;26(4):1169–82. DOI: 10.1111/jcmm.17170
23. Henry A, Mo X, Finan C, Chaffin MD, Speed D, Issa H et al. Genomewide association study meta-analysis provides insights into the etiology of heart failure and its subtypes. Nature Genetics. 2025;57(4):815– 28. DOI: 10.1038/s41588-024-02064-3
24. Zhang L, Smyth D, Al-Khalaf M, Blet A, Du Q, Bernick J et al. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. Nature Cardiovascular Research. 2022;1(12):1195–214. DOI: 10.1038/s44161-022-00181-y
25. Hahn VS, Knutsdottir H, Luo X, Bedi K, Margulies KB, Haldar SM et al. Myocardial Gene Expression Signatures in Human Heart Failure With Preserved Ejection Fraction. Circulation. 2021;143(2):120–34. DOI: 10.1161/CIRCULATIONAHA.120.050498
26. Paulus WJ. Unfolding Discoveries in Heart Failure. New England Journal of Medicine. 2020;382(7):679–82. DOI: 10.1056/NEJMcibr1913825
27. Wang H, Cai J. The role of microRNAs in heart failure. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2017;1863(8):2019–30. DOI: 10.1016/j.bbadis.2016.11.034
28. Pfisterer M, Buser P, Rickli H, Gutmann M, Erne P, Rickenbacher P et al. BNP-Guided vs Symptom-Guided Heart Failure Thera py: The Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) Randomized Trial. JAMA. 2009;301(4):383–92. DOI: 10.1001/jama.2009.2
29. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V et al. Effect of Nesiritide in Patients with Acute Decompensated Heart Failure. New England Journal of Medicine. 2011;365(1):32–43. DOI: 10.1056/NEJMoa1100171
30. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C et al. Plasma Cytokine Parameters and Mortality in Patients With Chronic Heart Failure. Circulation. 2000;102(25):3060–7. DOI: 10.1161/01.CIR.102.25.3060
31. Tromp J, Khan MAF, Klip IjT, Meyer S, De Boer RA, Jaarsma T et al. Biomarker Profiles in Heart Failure Patients With Preserved and Reduced Ejection Fraction. Journal of the American Heart Association. 2017;6(4):e003989. DOI: 10.1161/JAHA.116.003989
32. Tromp J, Westenbrink BD, Ouwerkerk W, Van Veldhuisen DJ, Samani NJ, Ponikowski P et al. Identifying Pathophysiological Mechanisms in Heart Failure With Reduced Versus Preserved Ejection Fraction. Journal of the American College of Cardiology. 2018;72(10):1081–90. DOI: 10.1016/j.jacc.2018.06.050
33. Kolur V, Vastrad B, Vastrad C, Kotturshetti S, Tengli A. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. BMC Cardiovascular Disorders. 2021;21(1):329. DOI: 10.1186/s12872-021-02146-8
34. Hanna A, Frangogiannis NG. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovascular Drugs and Therapy. 2020;34(6):849–63. DOI: 10.1007/s10557-020-07071-0
35. Collier P, Watson CJ, Voon V, Phelan D, Jan A, Mak G et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? European Journal of Heart Failure. 2011;13(10):1087– 95. DOI: 10.1093/eurjhf/hfr079
36. DuBrock HM, AbouEzzeddine OF, Redfield MM. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. PLOS ONE. 2018;13(8):e0201836. DOI: 10.1371/journal.pone.0201836
37. Weber K. Patterns of myocardial fibrosis. Journal of Molecular and Cellular Cardiology. 1989;21(Suppl 5):121–31. DOI: 10.1016/0022-2828(89)90778-5
38. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994;89(1):151–63. DOI: 10.1161/01.CIR.89.1.151
39. Ye B, Bradshaw AD, Abrahante JE, Dragon JA, Häußler TN, Bell SP et al. Left Ventricular Gene Expression in Heart Failure With Preserved Ejection Fraction – Profibrotic and Proinflammatory Pathways and Genes. Circulation: Heart Failure. 2023;16(8):e010395. DOI: 10.1161/CIRCHEARTFAILURE.123.010395
40. Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG et al. Obesity and the Risk of Heart Failure. New England Journal of Medicine. 2002;347(5):305–13. DOI: 10.1056/NEJ-Moa020245
41. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation. 2017;136(1):6–19. DOI: 10.1161/CIRCULATIONAHA.116.026807
42. Pandey A, Patel KV, Vaduganathan M, Sarma S, Haykowsky MJ, Berry JD et al. Physical Activity, Fitness, and Obesity in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure. 2018;6(12):975–82. DOI: 10.1016/j.jchf.2018.09.006
43. Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S et al. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovascular Research. 2023;118(18):3556–75. DOI: 10.1093/cvr/cvac166
44. Beer M, Seyfarth T, Sandstede J, Landschütz W, Lipke C, Köstler H et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. Journal of the American College of Cardiology. 2002;40(7):1267–74. DOI: 10.1016/S0735-1097(02)02160-5
45. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y et al. Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF. Circulation Research. 2021;128(2):232–45. DOI: 10.1161/CIRCRESAHA.120.317933
46. Leggat J, Bidault G, Vidal-Puig A. Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clinical Science. 2021;135(19):2265–83. DOI: 10.1042/CS20210127
Review
For citations:
Plotnikova M.R., Mustafina I.A., Shchekin V.S., Khabarova N.V., Belenkov Yu.N., Zagidullin N.Sh. Phenotypes of Chronic Heart Failure in Patients with Preserved Ejection Fraction. Kardiologiia. 2025;65(10):101-108. (In Russ.) https://doi.org/10.18087/cardio.2025.10.n3021










