

Relationship of Serum Chemerin Concentrations with Coronary Slow Flow: A Pathophysiological and Clinical Analysis
https://doi.org/10.18087/cardio.2025.5.n2888
Abstract
Aim. Coronary slow flow (CSF) is a condition characterized by below normal blood flow in coronary arteries without significant coronary stenosis. Its pathophysiology is unclear but may involve inflammation, endothelial dysfunction, and microvascular impairment. Chemerin, an inflammation-related adipokine, has been proposed as a potential biomarker in CSF. This study examines the relationship between serum chemerin concentrations and CSF.
Material and methods. A total of 100 patients who underwent coronary angiography were classified into CSF (n=50) and normal coronary flow (NCF, n=50) groups. Coronary flow rates were assessed using the Thrombolysis in Myocardial Infarction Frame Count (TFC) method. Serum chemerin concentrations were measured by ELISA. Logistic regression, correlation, and ROC analyses were performed to identify predictors of CSF and to evaluate diagnostic performance.
Results. Chemerin concentrations were significantly higher in the CSF group (p<0.001). Logistic regression identified chemerin as an independent CSF predictor (OR=1.097; 95 % CI: 1.022–1.177; p=0.005). Chemerin concentrations correlated positively with TFC (r=0.713, p<0.001). A chemerin cutoff value of 124.5 ng / ml provided 88 % sensitivity and 80 % specificity for CSF diagnosis.
Conclusion. Elevated serum chemerin is associated with CSF, suggesting its role in the pathogenesis of CSF and its potential as a diagnostic biomarker. Further research is needed to explore chemerin-targeted therapies in patients with CSF.
About the Authors
Aliye KuyumcuTurkey
MSc, Associate professor
Isparta, Turkey
Mevlüt Serdar Kuyumcu
Turkey
MD, Associate professor
Isparta, Turkey
References
1. Chalikias G, Tziakas D. Slow Coronary Flow: Pathophysiology, Clinical Implications, and Therapeutic Management. Angiology. 2021;72(9):808–18. DOI: 10.1177/00033197211004390
2. Kuyumcu MS, Kuyumcu A, Yayla Ç, Özbay MB, Alagöz M, Ünal S et al. Nesfatin-1 levels in patients with slow coronary flow. Kardiologia Polska. 2018;76(2):401–5. DOI: 10.5603/KP.a2017.0210
3. Li N, Tian L, Ren J, Li Y, Liu Y. Evaluation of homocysteine in the diagnosis and prognosis of coronary slow flow syndrome. Biomarkers in Medicine. 2019;13(17):1439–46. DOI: 10.2217/bmm-2018-0446
4. Yayla Ç, Akboğa MK, Gayretli Yayla K, Ertem AG, Efe TH, Şen F et al. A Novel Marker of Inflammation in Patients with Slow Coronary Flow: Lymphocyte-To-Monocyte Ratio. Biomarkers in Medicine. 2016;10(5):485–93. DOI: 10.2217/bmm-2016-0022
5. Toprak K, Özen K, Memioğlu T, İnanır M, Kaplangöray M, Akyol S et al. Comparison of the effect of Uric Acid/Albumin Ratio on Coronary Slow Flow with Other Inflammation-Based Markers. Biomarkers in Medicine. 2024;18(1):25–37. DOI: 10.2217/bmm-2023-0386
6. Macvanin MT, Rizzo M, Radovanovic J, Sonmez A, Paneni F, Isenovic ER. Role of Chemerin in Cardiovascular Diseases. Biomedicines. 2022;10(11):2970. DOI: 10.3390/biomedicines10112970
7. Mitsis A, Avraamides P, Lakoumentas J, Kyriakou M, Sokratous S, Karmioti G et al. Role of Inflammation Following An Acute Myocardial Infarction: Design of INFINITY. Biomarkers in Medicine. 2023;17(23):971– 81. DOI: 10.2217/bmm-2023-0491
8. Qi X, Fan J, Zhu J, Ling Y, Mi S, Chen H et al. Circulating Chemerin Level and Risk of Cancer: A Systematic Review and Meta-Analysis. Biomarkers in Medicine. 2020;14(10):919–28. DOI: 10.2217/bmm-2019-0500
9. Zakareia FA. Correlation of Peripheral Arterial Blood Flow with Plasma Chemerin and VEGF in Diabetic Peripheral Vascular Disease. Biomarkers in Medicine. 2012;6(1):81–7. DOI: 10.2217/bmm.11.85
10. Rourke JL, Dranse HJ, Sinal CJ. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obesity Reviews. 2013;14(3):245–62. DOI: 10.1111/obr.12009
11. Gibson CM, Cannon CP, Daley WL, Dodge JT, Alexander B, Marble SJ et al. TIMI Frame Count: A Quantitative Method of Assessing Coronary Artery Flow. Circulation. 1996;93(5):879–88. DOI: 10.1161/01. CIR.93.5.879
12. Yucel H, Ozaydin M, Dogan A, Erdogan D, Icli A, Sutcu R. Evaluation of plasma oxidative status in patients with slow coronary flow. Kardiologia Polska. 2013;71(6):588–94. DOI: 10.5603/KP.2013.0122
13. Aparicio A, Cuevas J, Morís C, Martín M. Slow Coronary Blood Flow: Pathogenesis and Clinical Implications. European Cardiology Review. 2022;17:e08. DOI: 10.15420/ecr.2021.46
14. Kurtoglu N, Akcay A, Dindar I. Usefulness of oral dipyridamole therapy for angiographic slow coronary artery flow. The American Journal of Cardiology. 2001;87(6):777–9. DOI: 10.1016/S0002-9149(00)01503-4
15. Cetin MS, Ozcan Cetin EH, Canpolat U, Aydın S, Temizhan A, Topaloglu S et al. An overlooked parameter in coronary slow flow phenomenon: whole blood viscosity. Biomarkers in Medicine. 2015;9(12):1311–21. DOI: 10.2217/bmm.15.92
16. Skuratovskaia D, Zatolokin P, Vulf M, Mazunin I, Litvinova L. Interrelation of chemerin and TNF-α with mtDNA copy number in adipose tissues and blood cells in obese patients with and without type 2 diabetes. BMC Medical Genomics. 2019;12(Suppl 2):40. DOI: 10.1186/s12920-019-0485-8
17. Vasilenko M.A., Kirienkova E.V., Skuratovskaya D.A., Zatolokin P.A., Mironyuk N.I., Litvinova L.S. The chemerin production changes in obese patients with different carbohydrate metabolism state. Biomeditsinskaya Khimiya. 2017;63(6):582–90. DOI: 10.18097/PBMC20176306582
18. Alieva A.M., Reznik E.V., Teplova N.V., Baykova I.E., Shnakhova L.M., Kotikova I.A. et al. Chemerin as a cardiovascular biological marker: Present and future. Russian Medicine. 2023;29(3):199–216. DOI: 10.17816/medjrf255397
19. Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD et al. Chemerin, a Novel Adipokine That Regulates Adipogenesis and Adipocyte Metabolism. Journal of Biological Chemistry. 2007;282(38):28175–88. DOI: 10.1074/jbc.M700793200
20. Vulf M.A., Shunkina D.A., Hung V., Komar A.A., Zatolokin P.A., Kirienkova E.V. et al. Chemerin as a potential regulator of mitochondrial quality control in obese patients. Medical Immunology. 2021;23(4):881–6. DOI: 10.15789/1563-0625-CAA-2227
21. Watts SW, Dorrance AM, Penfold ME, Rourke JL, Sinal CJ, Seitz B et al. Chemerin Connects Fat to Arterial Contraction. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(6):1320–8. DOI: 10.1161/ATVBAHA.113.301476
22. Neves KB, Lobato NS, Lopes RAM, Filgueira FP, Zanotto CZ, Oliveira AM et al. Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: a link to vascular dysfunction in obesity? Clinical Science. 2014;127(2):111–22. DOI: 10.1042/CS20130286
23. Neves KB, Nguyen Dinh Cat A, Lopes RAM, Rios FJ, Anagnostopoulou A, Lobato NS et al. Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox. Hypertension. 2015;66(3):657–66. DOI: 10.1161/HYPERTENSIONAHA.115.05616
24. Hanthazi A, Jespers P, Vegh G, Dubois C, Hubesch G, Springael J-Y et al. Chemerin Added to Endothelin-1 Promotes Rat Pulmonary Artery Smooth Muscle Cell Proliferation and Migration. Frontiers in Physiology. 2020;11:926. DOI: 10.3389/fphys.2020.00926
25. Xie Y, Liu L. Role of Chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. Journal of Translational Medicine. 2022;20(1):141. DOI: 10.1186/s12967-021-03220-7
26. Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G et al. Chemerin as a Mediator between Obesity and Vascular Inflammation in Children. The Journal of Clinical Endocrinology & Metabolism. 2012;97(4):E556–64. DOI: 10.1210/jc.2011-2937
27. Shen W, Tian C, Chen H, Yang Y, Zhu D, Gao P et al. Oxidative stress mediates chemerin-induced autophagy in endothelial cells. Free Radical Biology and Medicine. 2013;55:73–82. DOI: 10.1016/j.freeradbiomed.2012.11.011
28. Pedro-Botet J, Climent E, Benaiges D. Arteriosclerosis e inflamación. New therapeutic approaches. Medicina Clínica. 2020;155(6):256–62. DOI: 10.1016/j.medcli.2020.04.024
29. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circulation Research. 2016;118(4):535–46. DOI: 10.1161/CIRCRESAHA.115.307611
30. Neves KB, Nguyen Dinh Cat A, Alves-Lopes R, Harvey KY, Costa RMD, Lobato NS et al. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. American Journal of Physiology-Heart and Circulatory Physiology. 2018;315(6):H1851–60. DOI: 10.1152/ajpheart.00285.2018
31. Jannaway M, Torrens C, Warner JA, Sampson AP. Resolvin E1, resolvin D1 and resolvin D2 inhibit constriction of rat thoracic aorta and human pulmonary artery induced by the thromboxane mimetic U46619. British Journal of Pharmacology. 2018;175(7):1100–8. DOI: 10.1111/bph.14151
32. Darios ES, Winner BM, Charvat T, Krasinksi A, Punna S, Watts SW. The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery. American Journal of Physiology-Heart and Circulatory Physiology. 2016;311(2):H498–507. DOI: 10.1152/ajpheart.00998.2015
Review
For citations:
Kuyumcu A., Kuyumcu M. Relationship of Serum Chemerin Concentrations with Coronary Slow Flow: A Pathophysiological and Clinical Analysis. Kardiologiia. 2025;65(5):21-27. https://doi.org/10.18087/cardio.2025.5.n2888