

A Multicenter Prospective Observational Study to Examine the Experience of Using Phosphocreatine in Combination Therapy for Heart Failure Caused by Cancer Treatment. Rationale and Design of the Study
https://doi.org/10.18087/cardio.2025.3.n2870
Abstract
Enhanced cancer treatment efficacy has resulted in a significant increase in the number of cancer survivors after the cure of malignant tumors. However, cardiovascular morbidity, including chronic heart failure, has become the leading cause of death and decreased life expectancy among cancer survivors. This is due, in particular, to the cardiotoxic effects of anticancer drugs and associated factors. Cardioprotective approaches aim to reduce the incidence and severity of cardiotoxicity through the use of cardioprotective agents (e.g., dexrazoxane), liposomal drug delivery systems (e.g., liposomal doxorubicin), and optimization of drug administration schedules. Reducing the cardiotoxicity of cancer treatments is a clinically important goal. Phosphocreatine-based therapy represents a potentially valuable new strategy in this area. In this regard, the study "Multicenter prospective observational study to investigate the experience of using phosphocreatine in combination therapy for heart failure caused by cancer treatment" was initiated. This publication presents the protocol of the observational non-interventional NEOCARD study.
Keywords
About the Authors
A. A. SafiullinaRussian Federation
doctor of medicine, Senior Researcher
V. I. Potievskaya
Russian Federation
doctor of medicine,leading researcher
M. V. Vitsenya
Russian Federation
Phd, Senior Researcher
I. A. Cheremisina
Russian Federation
PhD
References
1. Chlebowski RT. Adriamycin (doxorubicin) cardiotoxicity: a review. The Western Journal of Medicine. 1979;131(5):364–8. PMID: 394479
2. Alkofide H, Alnaim L, Alorf N, Alessa W, Bawazeer G. Cardiotoxicity and Cardiac Monitoring Among Anthracycline-Treated Cancer Patients: A Retrospective Cohort Study. Cancer Management and Research. 2021;13:5149–59. DOI: 10.2147/CMAR.S313874
3. Jain D, Aronow W. Cardiotoxicity of cancer chemotherapy in clinical practice. Hospital Practice. 2019;47(1):6–15. DOI: 10.1080/21548331.2018.1530831
4. Rhea IB, Oliveira GH. Cardiotoxicity of Novel Targeted Chemotherapeutic Agents. Current Treatment Options in Cardiovascular Medicine. 2018;20(7):53. DOI: 10.1007/s11936-018-0649-4
5. Dong J, Chen H. Cardiotoxicity of Anticancer Therapeutics. Frontiers in Cardiovascular Medicine. 2018;5:9. DOI: 10.3389/fcvm.2018.00009
6. Johnson CB, Davis MK, Law A, Sulpher J. Shared Risk Factors for Cardiovascular Disease and Cancer: Implications for Preventive Health and Clinical Care in Oncology Patients. Canadian Journal of Cardiology. 2016;32(7):900–7. DOI: 10.1016/j.cjca.2016.04.008
7. Perez IE, Taveras Alam S, Hernandez GA, Sancassani R. Cancer Therapy-Related Cardiac Dysfunction: An Overview for the Clinician. Clinical Medicine Insights: Cardiology. 2019;13:117954681986644. DOI: 10.1177/1179546819866445
8. Richards MA. The National Awareness and Early Diagnosis Initiative in England: assembling the evidence. British Journal of Cancer. 2009;101(S2):S1–4. DOI: 10.1038/sj.bjc.6605382
9. Senkus E, Jassem J. Cardiovascular effects of systemic cancer treatment. Cancer Treatment Reviews. 2011;37(4):300–11. DOI: 10.1016/j.ctrv.2010.11.001
10. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Annals of Oncology. 2012;23(Suppl 7):vii155-166. DOI: 10.1093/annonc/mds293
11. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. The Lancet. 2007;370(9604):2011–9. DOI: 10.1016/S0140-6736(07)61865-0
12. Hutson TE, Figlin RA, Kuhn JG, Motzer RJ. Targeted therapies for metastatic renal cell carcinoma: an overview of toxicity and dosing strategies. The Oncologist. 2008;13(10):1084–96. DOI: 10.1634/theoncologist.2008-0120
13. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. Journal of the American College of Cardiology. 2010;55(3):213–20. DOI: 10.1016/j.jacc.2009.03.095
14. Wells QS, Lenihan DJ. Reversibility of Left Ventricular Dysfunction Resulting from Chemotherapy: Can This Be Expected? Progress in Cardiovascular Diseases. 2010;53(2):140–8. DOI: 10.1016/j.pcad.2010.06.005
15. Chargari C, Kirov KM, Bollet MA, Magné N, Védrine L, Cremades S et al. Cardiac toxicity in breast cancer patients: From a fractional point of view to a global assessment. Cancer Treatment Reviews. 2011;37(4):321–30. DOI: 10.1016/j.ctrv.2010.08.007
16. Macedo AVS, Hajjar LA, Lyon AR, Nascimento BR, Putzu A, Rossi L et al. Efficacy of Dexrazoxane in Preventing Anthracycline Cardiotoxicity in Breast Cancer. JACC: CardioOncology. 2019;1(1):68–79. DOI: 10.1016/j.jaccao.2019.08.003
17. De Baat EC, Mulder RL, Armenian S, Feijen EA, Grotenhuis H, Hudson MM et al. Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines. Cochrane Database Systematic Reviews. 2022;9(9):CD014638. DOI: 10.1002/14651858.CD014638.pub2
18. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A et al. Protective Effects of Carvedilol Against Anthracycline-Induced Cardiomyopathy. Journal of the American College of Cardiology. 2006;48(11):2258– 62. DOI: 10.1016/j.jacc.2006.07.052
19. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M et al. Trastuzumab-Induced Cardiotoxicity: Clinical and Prognostic Implications of Troponin I Evaluation. Journal of Clinical Oncology. 2010;28(25):3910–6. DOI: 10.1200/JCO.2009.27.3615
20. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F et al. Early Detection of Anthracycline Cardiotoxicity and Improvement With Heart Failure Therapy. Circulation. 2015;131(22):1981–8. DOI: 10.1161/CIRCULATIONAHA.114.013777
21. Cardinale D, Bacchiani G, Beggiato M, Colombo A, Cipolla CM. Strategies to Prevent and Treat Cardiovascular Risk in Cancer Patients. Seminars in Oncology. 2013;40(2):186–98. DOI: 10.1053/j.seminoncol.2013.01.008
22. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. European Heart Journal. 2016;37(21):1671–80. DOI: 10.1093/eurheartj/ehw022
23. Bosch X, Rovira M, Sitges M, Domènech A, Ortiz-Pérez JT, de Caralt TM et al. Enalapril and Carvedilol for Preventing Chemotherapy-Induced Left Ventricular Systolic Dysfunction in Patients With Malignant Hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). Journal of the American College of Cardiology. 2013;61(23):2355–62. DOI: 10.1016/j.jacc.2013.02.072
24. Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I et al. Doxorubicin – An Agent with Multiple Mechanisms of Anticancer Activity. Cells. 2023;12(4):659. DOI: 10.3390/cells12040659
25. Uusküla-Reimand L, Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription and cancer. Science Advances. 2022;8(44):eadd4920. DOI: 10.1126/sciadv.add4920
26. Kong C-Y, Guo Z, Song P, Zhang X, Yuan Y-P, Teng T et al. Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. International Journal of Biological Sciences. 2022;18(2):760–70. DOI: 10.7150/ijbs.65258
27. D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A et al. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Medicine and Cellular Longevity. 2020;2020:1–29. DOI: 10.1155/2020/5732956
28. Wu L, Wang L, Du Y, Zhang Y, Ren J. Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity. Trends in Pharmacological Sciences. 2023;44(1):34–49. DOI: 10.1016/j.tips.2022.10.003
29. Sharif SM, Hydock D. Insights into mitochondrial creatine kinase: examining preventive role of creatine supplement in doxorubicin-induced cardiotoxicity. Toxicology Mechanisms and Methods. 2025;35(2):136–45. DOI: 10.1080/15376516.2024.2393825
30. Derbugov V.N., Potapov A.L., Potievskaya V.I., Khmelevsky Ya.M. Exogenous Phosphocreatine Application in Elderly and Senile Patients Operated for Colorectal Cancer. General Reanimatology. 2017;13(4):38– 45. DOI: 10.15360/1813-9779-2017-4-38-45
31. Zhu Jing, Yao Hong-mei. Influence of creatine phosphate sodium on the quality of life of patients undergoing cancer chemotherapy. Hainan Medical Journal. 2012;23(16):31–6
32. Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). European Heart Journal. 2022;43(41):4229–361. DOI: 10.1093/eurheartj/ehac244
Review
For citations:
Safiullina A.A., Potievskaya V.I., Vitsenya M.V., Cheremisina I.A. A Multicenter Prospective Observational Study to Examine the Experience of Using Phosphocreatine in Combination Therapy for Heart Failure Caused by Cancer Treatment. Rationale and Design of the Study. Kardiologiia. 2025;65(3):21-25. (In Russ.) https://doi.org/10.18087/cardio.2025.3.n2870