

Right Ventricular Myocardial Global Longitudinal Strain Assessment of Right Ventricular Function in Patients with Pulmonary Embolism
https://doi.org/10.18087/cardio.2025.7.n2860
Abstract
Objective To explore the clinical application value of right ventricular (RV) myocardial global longitudinal strain
(RVGLS) in assessing changes in RV function in patients with pulmonary embolism.
Material and methods Patients with pulmonary embolism who were treated successfully in our hospital from January 2022 to
December 2023 were enrolled in this study. Included were 34 pulmonary embolism patients without pulmonary hypertension (Group B), 31 with pulmonary hypertension (Group C), and 35 healthy volunteers, matched by gender and age (Group A). Clinical data and RV function-related variables of these groups were compared.
Results Compared with pre-treatment values of Group A, the following variables of Groups B and C had higher pre-treatment values (p<0.05): RV end-diastolic diameter (RVEDD), RV to left ventricular diameter ratio (RV / LV), RV work index (RIMP), main pulmonary artery diameter (MPA), pulmonary artery systolic pressure (PASP), RVGLS, RV free wall longitudinal strain (RVFWLS),
The following variables had lower values (p<0.05): RV area change fraction (RVFAC), RV ejection fraction (RVEF), RV short-axis shortening rate (RVFS), tricuspid annular peak systolic velocity (S’), tricuspid annular systolic excursion (TAPSE). After therapy, significant differences were observed in the aforementioned indicators between Group C (with pulmonary hypertension) and Group A (healthy controls), with Group C showing persistently elevated RVEDD, RV / LV ratio, RIMP, MPA, PASP, RVGLS, and RVFWLS, alongside reduced RVFAC, RVEF, RVFS, S’, and TAPSE compared to Group A (all p<0.05). Compared to pre-treatment values in Group B (without pulmonary hypertension), pre-treatment Group C demonstrated significantly higher RVEDD, RV / LV ratio, RIMP, MPA, PASP, RVGLS, and RVFWLS, and significantly lower RVFAC, RVEF, RVFS, S’, and TAPSE (all p<0.05). Post-treatment comparisons between Groups B and C revealed that these differences remained significant (all p<0.05). ROC curve analysis revealed that RVGLS> 20.59 % is the best cutoff value for predicting the occurrence of pulmonary embolism, and RVGLS> –17.42 % is the best cutoff value for predicting the occurrence of pulmonary hypertension in patients with
pulmonary embolism. The results of multivariable logistic regression model analysis showed that RVGLS>–20.59 % is independently related to the occurrence of pulmonary embolism, and RVGLS>–17.42 % is independently related to pulmonary embolism complicated by pulmonary hypertension (p<0.05). In Groups A and B, RVGLS was negatively correlated with RVFAC, RVEF, and TAPSE (p<0.05 for all) and positively correlated with RIMP and PASP (p<0.05 for all). In Groups B and C, RVGLS was negatively correlated with RVFAC and RVEF in patients with pulmonary embolism before and after treatment (for all <0.05) and positively correlated with RIMP and PASP (p<0.05 for all).
Conclusion RVGLS can be applied to evaluate the RV function of patients with pulmonary embolism. RVGLS>–20.59 % is independently related to pulmonary embolism, and there is a significant correlation between RVGLS and RVVFAC, RVEF, RIMP, and PASP in patients with pulmonary embolism before and after treatment.
Keywords
About the Authors
Xinyan QiChina
bachelor's degree in clinical medicine and a master's degree in internal medicine.
Shandong, China
Liu Jun
China
bachelor's degree in clinical medicine and a master's degree in imaging medicine and nuclear medicine.
Shandong, China
Dongmei Wang
China
Bachelor's degree in Nursing.
Shandong, China
Houqiang Zhou
China
postgraduate student in Internal Medicine, holds a Master's degree.
Shandong, China
References
1. Hirmerová J, Bílková S, Woznica V. Isolated pulmonary embolism - a specific clinical entity? Vnitřní lékařství. 2023;69(1):8–13. DOI: 10.36290/vnl.2023.001
2. Demelo-Rodriguez P, Galeano-Valle F, Salzano A, Biskup E, Vriz O, Cittadini A et al. Pulmonary Embolism: A Practical Guide for the Busy Clinician. Heart Failure Clinics. 2020;16(3):317–30. DOI: 10.1016/j.hfc.2020.03.004
3. Khandait H, Harkut P, Khandait V, Bang V. Acute pulmonary embolism: Diagnosis and management. Indian Heart Journal. 2023;75(5):335–42. DOI: 10.1016/j.ihj.2023.05.007
4. An J, Nam Y, Cho H, Chang J, Kim D-K, Lee KS. Acute Pulmonary Embolism and Chronic Thromboembolic Pulmonary Hypertension: Clinical and Serial CT Pulmonary Angiographic Features. Journal of Korean Medical Science. 2022;37(10):e76. DOI: 10.3346/jkms.2022.37.e76
5. Surov A, Akritidou M, Bach AG, Bailis N, Lerche M, Meyer HJ et al. A New Index for the Prediction of 30-Day Mortality in Patients With Pulmonary Embolism: The Pulmonary Embolism Mortality Score (PEMS). Angiology. 2021;72(8):787–93. DOI: 10.1177/0003319721993346
6. Pulmonary embolism. Nature Reviews Disease Primers. 2018;4(1):18031. DOI: 10.1038/nrdp.2018.31
7. Jiménez D, Lobo JL, Barrios D, Prandoni P, Yusen RD. Risk stratification of patients with acute symptomatic pulmonary embolism. Internal and Emergency Medicine. 2016;11(1):11–8. DOI: 10.1007/s11739-015-1388-0
8. Yuriditsky E, Horowitz JM, Lau JF. Chronic thromboembolic pulmonary hypertension and the post-pulmonary embolism (PE) syndrome. Vascular Medicine. 2023;28(4):348–60. DOI: 10.1177/1358863X231165105
9. Barco S, Mavromanoli AC, Kreitner K-F, Bunck AC, Gertz RJ, Ley S et al. Preexisting Chronic Thromboembolic Pulmonary Hypertension in Acute Pulmonary Embolism. Chest. 2023;163(4):923–32. DOI: 10.1016/j.chest.2022.11.045
10. Benza RL, Langleben D, Hemnes AR, Vonk Noordegraaf A, Rosenkranz S, Thenappan T et al. Riociguat and the right ventricle in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. European Respiratory Review. 2022;31(166):220061. DOI: 10.1183/16000617.0061-2022
11. Kohls N, Konstantinides SV, Lang IM, Funk GC, Huber K. Risk stratification and risk-adapted management of acute pulmonary embolism. Wiener klinische Wochenschrift. 2023;135(1–2):22–7. DOI: 10.1007/s00508-022-02104-0
12. Konstantinides SV, Vicaut E, Danays T, Becattini C, Bertoletti L, Beyer-Westendorf J et al. Impact of Thrombolytic Therapy on the LongTerm Outcome of Intermediate-Risk Pulmonary Embolism. Journal of the American College of Cardiology. 2017;69(12):1536–44. DOI: 10.1016/j.jacc.2016.12.039
13. Li Y, Wang Y, Ye X, Kong L, Zhu W, Lu X. Clinical study of right ventricular longitudinal strain for assessing right ventricular dysfunction and hemodynamics in pulmonary hypertension. Medicine. 2016;95(50):e5668. DOI: 10.1097/MD.0000000000005668
14. Li S-Y, Zhang Y, Shen T-T, Lu T-T, Li X. Measuring of strain parameters reflects changes of right ventricular function before and after thrombolytic therapy in patients with acute pulmonary embolism. The International Journal of Cardiovascular Imaging. 2022;38(10):2199–208. DOI: 10.1007/s10554-022-02626-8
15. Mabrouk B, Anis C, Hassen D, Leila A, Daoud S, Hichem K et al. Pulmonary thromboembolism: incidence, physiopathology, diagnosis and treatment. La Tunisie Medicale. 2014;92(7):435–47. PMID: 25775281
16. Mascarello MG, Vannoni G, Indavere A, Waistein KM, Estrella ML, Rodríguez SG et al. Pulmonary embolism. Clinical suspicion and anatomopathological correlation. Medicina. 2020;80(2):97–102. PMID: 32282313
17. Osho AA, Dudzinski DM. Interventional Therapies for Acute Pulmonary Embolism. Surgical Clinics of North America. 2022;102(3):429– 47. DOI: 10.1016/j.suc.2022.02.004
18. Lacey MJ, Hammad TA, Parikh M, Tefera L, Sharma P, Kahl R et al. Prospective Experience of Pulmonary Embolism Management and Outcomes. The Journal of Invasive Cardiology. 2021;33(3):E173–80. PMID: 33570502
19. Samaranayake CB, Royle G, Jackson S, Yap E. Right ventricular dysfunction and pulmonary hypertension following sub‐massive pulmonary embolism. The Clinical Respiratory Journal. 2017;11(6):867–74. DOI: 10.1111/crj.12429
20. Lang IM, Campean IA, Sadushi-Kolici R, Badr-Eslam R, Ger ges C, Skoro-Sajer N. Chronic Thromboembolic Disease and Chronic Thromboembolic Pulmonary Hypertension. Clinics in Chest Medicine. 2021;42(1):81–90. DOI: 10.1016/j.ccm.2020.11.014
21. Edemskiy A.G., Ivanov S.N., Kliver E.N., Novikova N.V., Galstyan M.G., Sevastyanov A.V. et al. Patient’s way from acute pulmonary embolism to chronic thromboembolic pulmonary hypertension: diagnostic and treatment options. Therapeutic Archive. 2019;91(8):108– 14. DOI: 10.26442/00403660.2019.08.000316
22. Trivedi SJ, Terluk AD, Kritharides L, Chow V, Chia E-M, Byth K et al. Right ventricular speckle tracking strain echocardiography in patients with acute pulmonary embolism. The International Journal of Cardiovascular Imaging. 2020;36(5):865–72. DOI: 10.1007/s10554-020-01779-8
23. Mahfoudhi H, Chenik S, Haggui A, Dahmani R, Mastouri M, Lahidheb D et al. Fonction ventriculaire droite après un premier épisode d’embolie pulmonaire : apport du strain 2D. Annales de Cardiologie et d’Angéiologie. 2020;69(3):115–9. DOI: 10.1016/j.ancard.2020.03.010
24. Dutta T, Frishman WH, Aronow WS. Echocardiography in the Evaluation of Pulmonary Embolism. Cardiology in Review. 2017;25(6):309–14. DOI: 10.1097/CRD.0000000000000158
25. Guliani S, Das Gupta J, Osofsky R, Marek J, Rana MA, Marinaro J. Protocolized use of catheter-directed thrombolysis and echocardiography is highly effective in reversing acute right heart dysfunction in severe submassive pulmonary embolism patients. Perfusion. 2020;35(7):641–8. DOI: 10.1177/0267659119896891
26. Chornenki NLJ, Poorzargar K, Shanjer M, Mbuagbaw L, Delluc A, Crowther M et al. Detection of right ventricular dysfunction in acute pulmonary embolism by computed tomography or echocardiography: A systematic review and meta‐analysis. Journal of Thrombosis and Haemostasis. 2021;19(10):2504–13. DOI: 10.1111/jth.15453
27. Agarwal G, Kharge J, Raghu TR, MohanRao PS, Manjunath CN. Incidence and predictors of chronic thromboembolic pulmonary hypertension following acute pulmonary embolism: An echocardiography guided approach. Indian Heart Journal. 2021;73(6):746–50. DOI: 10.1016/j.ihj.2021.10.003
28. Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, Function, and Dysfunction of the Right Ventricle: JACC Stateof-the-Art Review. Journal of the American College of Cardiology. 2019;73(12):1463–82. DOI: 10.1016/j.jacc.2018.12.076
29. Pargana J, Calé R, Martinho M, Santos J, Lourenço C, Castro Pereira JA et al. Prevalence and predictors of chronic thromboembolic pulmonary hypertension following severe forms of acute pulmonary embolism. Revista Portuguesa de Cardiologia. 2023;42(12):947–58. DOI: 10.1016/j.repc.2023.06.007
30. Wong DJ, Sampat U, Gibson MA, Auger WR, Madani MM, Daniels LB et al. Tricuspid annular plane systolic excursion in chronic thromboembolic pulmonary hypertension before and after pulmonary thromboendarterectomy. Echocardiography. 2016;33(12):1805–9. DOI: 10.1111/echo.13364
31. Augustine DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J et al. Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo Research & Practice. 2018;5(3):G11–24. DOI: 10.1530/ERP-17-0071
32. Slegg OG, Willis JA, Wilkinson F, Sparey J, Wild CB, Rossdale J et al. IMproving PULmonary hypertension Screening by Echocardiography: IMPULSE. Echo Research & Practice. 2022;9(1):9. DOI: 10.1186/s44156-022-00010-9
33. Doheny C, Gonzalez L, Duchman SM, Varon J, Bechara CF, Cheung M et al. Echocardiographic assessment with right ventricular function improvement following ultrasound-accelerated catheter-directed thrombolytic therapy in submassive pulmonary embolism. Vascular. 2018;26(3):271–7. DOI: 10.1177/1708538117733645
34. Dong J, Jiang X-M, Xie D-J, Luo J, Ran H, Li L et al. Establishment of a canine model of pulmonary arterial hypertension induced by dehydromonocrotaline and ultrasonographic study of right ventricular remodeling. Clinical and Experimental Hypertension. 2023;45(1):2190503. DOI: 10.1080/10641963.2023.2190503
35. Zhou C, Lou B, Li H, Wang X, Ao H, Duan F. Incidence, risk factors and prognostic effect of imaging right ventricular involvement in patients with COVID-19: a dose–response analysis protocol for systematic review. BMJ Open. 2021;11(5):e049866. DOI: 10.1136/bmjopen-2021-049866
36. Waziri F, Ringgaard S, Mellemkjær S, Bøgh N, Kim WY, Clemmensen TS et al. Long-term changes of right ventricular myocardial deformation and remodeling studied by cardiac magnetic resonance imaging in patients with chronic thromboembolic pulmonary hypertension following pulmonary thromboendarterectomy. International Journal of Cardiology. 2020;300:282–8. DOI: 10.1016/j.ijcard.2019.09.038
37. Vitarelli A, Barillà F, Capotosto L, D’Angeli I, Truscelli G, De Maio M et al. Right Ventricular Function in Acute Pulmonary Embolism: A Combined Assessment by Three-Dimensional and Speckle-Tracking Echocardiography. Journal of the American Society of Echocardiography. 2014;27(3):329–38. DOI: 10.1016/j.echo.2013.11.013
38. Wang Y, Guo D, Liu M, Zhang X, Hu H, Yang H et al. Assessment of right ventricular remodeling in chronic thromboembolic pulmonary hypertension by 2D-speckle tracking echocardiography: A comparison with cardiac magnetic resonance. Frontiers in Cardiovascular Medicine. 2022;9:999389. DOI: 10.3389/fcvm.2022.999389
39. Tello K, Dalmer A, Vanderpool R, Ghofrani HA, Naeije R, Roller F et al. Right ventricular function correlates of right atrial strain in pulmonary hypertension: a combined cardiac magnetic resonance and conductance catheter study. American Journal of Physiology-Heart and Circulatory Physiology. 2020;318(1):H156–64. DOI: 10.1152/ajpheart.00485.2019
40. Vonk Noordegraaf A, Westerhof BE, Westerhof N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. Journal of the American College of Cardiology. 2017;69(2):236–43. DOI: 10.1016/j.jacc.2016.10.047
41. Pruszczyk P, Goliszek S, Lichodziejewska B, Kostrubiec M, Ciurzyński M, Kurnicka K et al. Prognostic Value of Echocardiography in Normotensive Patients With Acute Pulmonary Embolism. JACC: Cardiovascular Imaging. 2014;7(6):553–60. DOI: 10.1016/j.jcmg.2013.11.004
42. Maraziti G, Vinson DR, Becattini C. Echocardiography for risk stratification in patients with pulmonary embolism at low risk of death: a response. European Heart Journal. 2021;43(1):86–7. DOI: 10.1093/eurheartj/ehab779
43. Wilson R, Eguchi S, Orihara Y, Pfeiffer M, Peterson B, Ruzieh M et al. Association between right ventricular global longitudinal strain and mortality in intermediate‐risk pulmonary embolism. Echocardiography. 2024;41(4):e15815. DOI: 10.1111/echo.15815
Review
For citations:
Qi X., Jun L., Wang D., Zhou H. Right Ventricular Myocardial Global Longitudinal Strain Assessment of Right Ventricular Function in Patients with Pulmonary Embolism. Kardiologiia. 2025;65(7):46-54. https://doi.org/10.18087/cardio.2025.7.n2860