ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Left Ventricular Remodeling Predictors in Chronic Heart Failure of Ischemic Etiology

https://doi.org/10.18087/cardio.2024.11.n2794

Abstract

Aim      To identify metabolomic and structure and function markers of remote left ventricular (LV) remodeling in patients with chronic heart failure (CHF) of ischemic etiology and LV ejection fraction (EF) <50%.

Material and methods  This prospective study included 56 patients with 3-4 NYHA functional class CHF of ischemic etiology (mean age, 66±7 years) and 50 patients with ischemic heart disease (IHD) without signs of CHF (69 [64; 73.7] years). Concentration of 19 amino acids, 11 products of kynurenine catabolism of tryptophan, 30 acylcarnitines with different chain lengths were measured in all participants. The metabolites that showed statistical differences between the comparison groups were then used for the analysis. Echocardiography was used to assess LV cavity remodeling at the time of the CHF patient inclusion in the study and after 6 months of follow-up. Predictors of long-term LV cavity remodeling were assessed for this cohort taking into account statistically significant echocardiographic parameters and metabolites.

Results Patients with CHF of ischemic etiology, predominantly (81%) had pathological calculated types of LV remodeling (concentric and eccentric hypertrophy, 46 and 35%, respectively). However, this classification had limitations in describing this cohort. In addition, in this group, the concentrations of alanine, proline, asparagine, glycine, arginine, histidine, lysine, valine, indolyl-3-acetic acid, indolyl-3-propionic acid, C16-1-OH, and C16-OH were significantly (p<0.05) lower, and the concentrations of most medium- and long-chain acylcarnitines were higher than in patients with IHD without signs of CHF. The long-term (6 months) reverse remodeling of the LV cavity in CHF of ischemic etiology was influenced by changes in the interventricular septum thickness (hazard ratio, HR, 19.07; 95% confidence interval, CI, 1.76-206.8; p=0.006) and concentrations of anthranilic acid (HR 19.8; 95% CI 1.01-387.8; p=0.019) and asparagine (HR 8.76; 95% CI 1.07-71.4; p=0.031).

Conclusion      The presence of an interventricular septum thickness of more than 13.5 mm, anthranilic acid concentrations of higher than 0.235 μM/l, or an asparagine concentration of less than 135.2 μM/l in patients with CHF of ischemic etiology after 6 months of follow-up affects their achievement of LV cavity reverse remodeling.

 

About the Authors

A. A. Ageev
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Аssistant professor at the Department of Hospital Therapy №1



M. V. Kozhevnikova
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Ph.D. of Medical Sciences, Professor at the Department of Hospital Therapy  №1 



D. A. Tyurina
Sechenov First Moscow State Medical University, Moscow
Russian Federation

6th year graduate student at the Institute 



E. O. Korobkova
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Associate professor at the Department of Hospital Therapy №1 



T. O. Kondratieva
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Ph.D. of Medical Sciences, Associate professor at the Department of Hospital Therapy №1 



K. M. Shestakova
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Ph.D. of Pharmaceutical Sciences, Head of the Laboratory, Senior Researcher at the Institute of Translational Medicine and Biotechnology of the Scientific and Technical Park of Biomedicine of Sechenov University



N. E. Moskaleva
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Ph.D. of Biological Sciences, Deputy Head of the Center of the Institute of Translational Medicine and Biotechnology of the Biomedicine Scientific and Technical Park of Sechenov University



P. A. Markin
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Ph.D. of Pharmaceutical Sciences, Head of the Laboratory of the Institute of Translational Medicine and Biotechnology of the Scientific and Technical Park of Biomedicine of Sechenov University




N. V. Khabarova
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Ph.D. of Medical Sciences, Assistant professor at the Department of Hospital Therapy №1 



S. A. Appolonova
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Ph.D. of Chemical Sciences, Associate professor at the Department of Pharmacology



Yu. N. Belenkov
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Academician of the Russian Academy of Sciences, Doctor of Medical Sciences, Head of  the Department of Hospital Therapy №1 



References

1. Polyakov D.S., Fomin I.V., Belenkov Yu.N., Mareev V.Yu., Ageev F.T., Artemjeva E.G. et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCHCHF study. Kardiologiia. 2021;61(4):4–14. DOI: 10.18087/cardio.2021.4.n1628

2. Boytsov S.A. Chronic heart failure: evolution of etiology, prevalence and mortality over the past 20 years. Therapeutic Archive. 2022;94(1):5–8. DOI: 10.26442/00403660.2022.01.201317

3. Pagliaro BR, Cannata F, Stefanini GG, Bolognese L. Myocardial ischemia and coronary disease in heart failure. Heart Failure Reviews. 2020;25(1):53–65. DOI: 10.1007/s10741-019-09831-z

4. Fomin I.V. Chronic heart failure in Russian Federation: what do we know and what to do. Russian Journal of Cardiology. 2016;8:7–13. DOI: 10.15829/1560-4071-2016-8-7-13

5. Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity. 2017;2017:1–16. DOI: 10.1155/2017/3920195

6. González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M et al. Cardiac remodelling – Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure. 2022;24(6):927–43. DOI: 10.1002/ejhf.2493

7. Vasyuk Yu.A., Kopeleva M.V., Korneeva O.N., Krikunov P.V., Ryabov V.V., Surkova E.A. et al. Recommendations for quantifying the structure and function of heart chambers. Russian Journal of Cardiology. 2012;17(4s4):1–28.

8. Saraon T, Katz SD. Reverse Remodeling in Systolic Heart Failure. Cardiology in Review. 2015;23(4):173–81. DOI: 10.1097/CRD.0000000000000068

9. Wang K, Youngson E, Bakal JA, Thomas J, McAlister FA, Oudit GY. Cardiac reverse remodelling and health status in patients with chronic heart failure. ESC Heart Failure. 2021;8(4):3106–18. DOI: 10.1002/ehf2.13417

10. Belyi S.A., Lukashenko V.I., Kriventsov A.V., Nemkov A.S., Khubulava G.G. Full Reverse Left Ventricle Conteractility Function Remodeling and Recovery in Patient With Dilated Cardiomyopathy. Clinical Case. Kardiologiia. 2023;63(12):93–5. DOI: 10.18087/cardio.2023.12.n2256

11. Sumin A.N. Optimal medical therapy for chronic heart failure: a role of mineralocorticoid receptor antagonists. Russian Medical Journal. 2018;26(11–1):71–5.

12. Gyöngyösi M, Winkler J, Ramos I, Do Q, Firat H, McDonald K et al. Myocardial fibrosis: biomedical research from bench to bedside. European Journal of Heart Failure. 2017;19(2):177–91. DOI: 10.1002/ejhf.696

13. Ferreira JP, Duarte K, Montalescot G, Pitt B, De Sa EL, Hamm CW et al. Effect of eplerenone on extracellular cardiac matrix biomarkers in patients with acute ST-elevation myocardial infarction without heart failure: insights from the randomized double-blind REMINDER Study. Clinical Research in Cardiology. 2018;107(1):49–59. DOI: 10.1007/s00392-017-1157-3

14. Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL. Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling in Heart Failure With Reduced Ejection Fraction. JACC: Heart Failure. 2019;7(9):782–94. DOI: 10.1016/j.jchf.2019.06.004

15. Aliyeva A.M., Nikitin I.G., Starodubova A.V., Gogova L.M., Gromova O.I., Baikova I.E. et al. Diagnostic and prognostic significance of natriuretic peptides in cardiac patients. Medical Business. 2016;3:78–84.

16. Belenkov Yu.N., Privalova E.V., Kozhevnikova M.V., Korobkova E.O., Ilgisonis I.S., Kaplunova V.Yu. et al. Metabolomic Profiling of Patients With Cardiovascular Diseases. Kardiologiia. 2018;58(9):59–62. DOI: 10.18087/cardio.2018.9.10172

17. Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V et al. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circulation Research. 2016;118(10):1659–701. DOI: 10.1161/RES.0000000000000097

18. Deidda M, Piras C, Dessalvi CC, Locci E, Barberini L, Torri F et al. Metabolomic approach to profile functional and metabolic changes in heart failure. Journal of Translational Medicine. 2015;13(1):297. DOI: 10.1186/s12967-015-0661-3

19. Belenkov Yu.N., Ageev A.A., Kozhevnikova M.V., Khabarova N.V., Krivova A.V., Korobkova E.O. et al. Relationship of Acylcarnitines to Myocardial Ischemic Remodeling and Clinical Manifestations in Chronic Heart Failure. Journal of Cardiovascular Development and Disease. 2023;10(10):438. DOI: 10.3390/jcdd10100438

20. Yu F, McLean B, Badiwala M, Billia F. Heart Failure and Drug Therapies: A Metabolic Review. International Journal of Molecular Sciences. 2022;23(6):2960. DOI: 10.3390/ijms23062960

21. Wu C, Zhang Z, Zhang W, Liu X. Mitochondrial dysfunction and mitochondrial therapies in heart failure. Pharmacological Research. 2022;175:106038. DOI: 10.1016/j.phrs.2021.106038

22. Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. International Journal of Molecular Sciences. 2021;22(2):614. DOI: 10.3390/ijms22020614

23. Jiang M, Xie X, Cao F, Wang Y. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Frontiers in Cardiovascular Medicine. 2021;8:789267. DOI: 10.3389/fcvm.2021.789267

24. Kalyuzhin V.V., Teplyakov A.T., Solovtsov M.A., Kalyuzhina E.V., Bespalova I.D., Terentyeva N.N. Remodeling of the left ventricle: one or several scenarios? Bulletin of Siberian Medicine. 2016;15(4):120–39. DOI: 10.20538/1682-0363-2016-4-120-139

25. Baumgartner R, Forteza MJ, Ketelhuth DFJ. The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine. 2019;122:154148. DOI: 10.1016/j.cyto.2017.09.004

26. Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Experimental Gerontology. 2020;132:110841. DOI: 10.1016/j.exger.2020.110841

27. Ge Z, Li A, McNamara J, Dos Remedios C, Lal S. Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: translation to human studies. Heart Failure Reviews. 2019;24(5):743–58. DOI: 10.1007/s10741-019-09806-0

28. Narayan SI, Terre GV, Amin R, Shanghavi KV, Chandrashekar G, Ghouse F et al. The Pathophysiology and New Advancements in the Pharmacologic and Exercise-Based Management of Heart Failure With Reduced Ejection Fraction: A Narrative Review. Cureus. 2023;15(9):e45719. DOI: 10.7759/cureus.45719

29. Schwinger RHG. Pathophysiology of heart failure. Cardiovascular Diagnosis and Therapy. 2021;11(1):263–76. DOI: 10.21037/cdt-20-302

30. Yalta K, Yilmaz MB, Yalta T, Palabiyik O, Taylan G, Zorkun C. Late Versus Early Myocardial Remodeling After Acute Myocardial Infarction: A Comparative Review on Mechanistic Insights and Clinical Implications. Journal of Cardiovascular Pharmacology and Therapeutics. 2020;25(1):15–26. DOI: 10.1177/1074248419869618

31. Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. European Heart Journal. 2022;43(27):2549–61. DOI: 10.1093/eurheartj/ehac223

32. El Ouazzani J, Jandou I. Aneurysm and pseudoaneurysm of the left ventricle. Annals of Medicine & Surgery. 2022;75:103405. DOI: 10.1016/j.amsu.2022.103405

33. Yang Y, Liu X, Liu X, Xie C, Shi J. The role of the kynurenine pathway in cardiovascular disease. Frontiers in Cardiovascular Medicine. 2024;11:1406856. DOI: 10.3389/fcvm.2024.1406856

34. Ala M, Eftekhar SP. The Footprint of Kynurenine Pathway in Cardiovascular Diseases. International Journal of Tryptophan Research. 2022;15:11786469221096643. DOI: 10.1177/11786469221096643

35. Weiss N, Black SAG, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflügers Archiv - European Journal of Physiology. 2013;465(8):1159–70. DOI: 10.1007/s00424-013-1259-3

36. Ondacova K, Karmazinova M, Lazniewska J, Weiss N, Lacinova L. Modulation of Cav3.2 T-type calcium channel permeability by asparagine- linked glycosylation. Channels. 2016;10(3):175–84. DOI: 10.1080/19336950.2016.1138189

37. Goni L, Razquin C, Toledo E, Guasch-Ferré M, Clish CB, Babio N et al. Arginine catabolism metabolites and atrial fibrillation or heart failure risk: 2 case-control studies within the Prevención con Dieta Mediterránea (PREDIMED) trial. The American Journal of Clinical Nutrition. 2022;116(3):653–62. DOI: 10.1093/ajcn/nqac139

38. Pedersen ER, Tuseth N, Eussen SJPM, Ueland PM, Strand E, Svingen GFT et al. Associations of Plasma Kynurenines With Risk of Acute Myocardial Infarction in Patients With Stable Angina Pectoris. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(2):455–62. DOI: 10.1161/ATVBAHA.114.304674


Review

For citations:


Ageev A.A., Kozhevnikova M.V., Tyurina D.A., Korobkova E.O., Kondratieva T.O., Shestakova K.M., Moskaleva N.E., Markin P.A., Khabarova N.V., Appolonova S.A., Belenkov Yu.N. Left Ventricular Remodeling Predictors in Chronic Heart Failure of Ischemic Etiology. Kardiologiia. 2024;64(11):106-116. (In Russ.) https://doi.org/10.18087/cardio.2024.11.n2794

Views: 616


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)