ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Remodeling of the External Respiratory System in Chronic Heart Failure - a Factor of Pathogenesis and a Therapeutic Target

https://doi.org/10.18087/cardio.2025.1.n2767

Abstract

During the development of chronic heart failure (CHF), the lungs and the external respiratory system (ERS) as a whole undergo significant remodeling. These changes are most clearly manifested during physical exercise (PE), when the requirement for ventilation increases, and the ERS works under stress. Patients with CHF during exercise are characterized by the so-called pattern of frequent shallow breathing, when minute ventilation increases mainly due to an increase in the respiratory rate, and the depth of breathing increases to a much lesser extent than in individuals without CHF. The pattern of frequent shallow breathing is an adaptive response that prevents rapid exhaustion of the respiratory muscles (RM) due to the decreased compliance of the lung tissue and airways, and, accordingly, increased work of breathing typical of patients with CHF. In such conditions, tachypnea becomes the only available mechanism for maintaining the required ventilation volume. As the exercise load increases, the inability to adequately increase the depth of breathing contributes to the growth of physiological dead space, and the ventilation efficiency drops. The progressive decrease in the ventilation efficiency is evident as a paradoxically low level of carbon dioxide released relative to the ventilated volume. Such "working conditions" lead to hyperactivation of the inspiratory metaboreflex, which causes a whole pathogenetic cascade, including sympathicotonia, deterioration of the blood supply to the motor muscles and hyperactivation of their metaboreflex, which leads to further limitation of exercise tolerance. Sympathicotonia characteristic of CHF enhances the activation of carotid chemoreceptors. Along with hypocapnia, this can lead to the development of periodic breathing and central sleep apnea to further worsen the prognosis. Progressive sympathicotonia, hypoxia, endothelial dysfunction, and chronic inflammation result in aggravation of skeletal muscle myopathy. Thus, the condition of RM is at least an important, if not the leading factor in the pathogenesis of impaired exercise tolerance, which requires continuous therapeutic treatment. Such treatment cannot be of a "rehabilitation" nature, i.e., be used for a limited time, but must be performed on a permanent basis. The search for optimal methods of the respiratory and skeletal muscle training in order to weaken the mutually reinforcing connection between the carotid chemoreflex and muscle metaboreflex, as well as the search for such forms of their implementation, in which they will become a permanent part of the treatment, is extremely important for successful management of CHF patients.

 

About the Author

Yu. L. Begrambekova
Medical Research and Educational Institute, University Clinic of the Lomonosov Moscow State University, Moscow
Russian Federation

PhD, Leading Researcher, Department of Age-Associated Diseases



References

1. Clark AL, Sparrow JL, Coats AJS. Muscle fatigue and dyspnoea in chronic heart failure: two sides of the same coin? European Heart Journal. 1995;16(1):49–52. DOI: 10.1093/eurheartj/16.1.49

2. Dubé B-P, Agostoni P, Laveneziana P. Exertional dyspnoea in chronic heart failure: the role of the lung and respiratory mechanical factors. European Respiratory Review. 2016;25(141):317–32. DOI: 10.1183/16000617.0048-2016

3. Morosin M, Farina S, Vignati C, Spadafora E, Sciomer S, Salvioni E et al. Exercise performance, haemodynamics, and respiratory pattern do not identify heart failure patients who end exercise with dyspnoea from those with fatigue. ESC Heart Failure. 2018;5(1):115–9. DOI: 10.1002/ehf2.12207

4. Gorter TM, Hoendermis ES, Van Veldhuisen DJ, Voors AA, Lam CSP, Geelhoed B et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. European Journal of Heart Failure. 2016;18(12):1472–87. DOI: 10.1002/ejhf.630

5. Ramalho SHR, Cipriano Junior G, Vieira PJC, Nakano EY, Winkelmann ER, Callegaro CC et al. Inspiratory muscle strength and six-minute walking distance in heart failure: Prognostic utility in a 10 years follow up cohort study. PLOS ONE. 2019;14(8):e0220638. DOI: 10.1371/journal.pone.0220638

6. Corrà U, Pistono M, Mezzani A, Braghiroli A, Giordano A, Lanfranchi P et al. Sleep and Exertional Periodic Breathing in Chronic Heart Failure: Prognostic Importance and Interdependence. Circulation. 2006;113(1):44–50. DOI: 10.1161/CIRCULATIONAHA.105.543173

7. Sun X-G, Hansen JE, Beshai JF, Wasserman K. Oscillatory Breathing and Exercise Gas Exchange Abnormalities Prognosticate Early Mortality and Morbidity in Heart Failure. Journal of the American College of Cardiology. 2010;55(17):1814–23. DOI: 10.1016/j.jacc.2009.10.075

8. Piepoli M. Aetiology and pathophysiological implications of oscillatory ventilation at rest and during exercise in chronic heart failure. Do Cheyne and Stokes have an important message for modern-day patients with heart failure? European Heart Journal. 1999;20(13):946– 53. DOI: 10.1053/euhj.1999.1506

9. Chuchalin A.G. Dyspnea: neurobiological and clinical aspects. Pulmonologiya. 2021;31(6):695–700. DOI: 10.18093/0869-0189-2021-31-6-695-700

10. Begrambekova Yu.L., Arutyunov G.P., Glezer M.G., Karanadze N.A., Kolesnikova E.A., Lelyavina T.A. et al. Evaluation of the Functional Reserve and Exercise Tolerance in Patients with CHF in Clinical Trials (Consent Document of the Editorial board of the Journal of Cardiology, the Board of the Society of Specialists in Heart Failure (SSHF) and Working Group “Non-drug treatment methods” of SSHF). Kardiologiia. 2024;64(7):4–26. DOI: 10.18087/cardio.2024.7.n2637

11. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Failure Reviews. 2013;18(1):79–94. DOI: 10.1007/s10741-012-9332-0

12. Mead J. Control of respiratory frequency. Journal of Applied Physiology. 1960;15(3):325–36. DOI: 10.1152/jappl.1960.15.3.325

13. Clark FJ, Von Euler C. On the regulation of depth and rate of breathing. The Journal of Physiology. 1972;222(2):267–95. DOI: 10.1113/ jphysiol.1972.sp009797

14. Milic-Emili G, Petit JM, Deroanne R. Mechanical work of breathing during exercise in trained and untrained subjects. Journal of Applied Physiology. 1962;17(1):43–6. DOI: 10.1152/jappl.1962.17.1.43

15. Koch S, Welch JF, Tran R, Ramsook AH, Hung A, Carlsten C et al. Ventilatory responses to constant load exercise following the inhalation of a short-acting ß2-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction. Environment International. 2021;146:106182. DOI: 10.1016/j.envint.2020.106182

16. Johnson BD, Reddan WG, Seow KC, Dempsey JA. Mechanical Constraints on Exercise Hyperpnea in a Fit Aging Population. American Review of Respiratory Disease. 1991;143(5 Pt 1):968–77. DOI: 10.1164/ajrccm/143.5_Pt_1.968

17. Gideon EA, Cross TJ, Coriell CL, Duke JW. The effect of estimating chest wall compliance on the work of breathing during exercise as determined via the modified Campbell diagram. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2021;320(3):R268–75. DOI: 10.1152/ajpregu.00263.2020

18. Cross TJ, Sabapathy S, Beck KC, Morris NR, Johnson BD. The resistive and elastic work of breathing during exercise in patients with chronic heart failure. European Respiratory Journal. 2012;39(6):1449–57. DOI: 10.1183/09031936.00125011

19. Cross TJ, Gideon EA, Morris SJ, Coriell CL, Hubbard CD, Duke JW. A comparison of methods used to quantify the work of breathing during exercise. Journal of Applied Physiology. 2021;131(3):1123–33. DOI: 10.1152/japplphysiol.00411.2021

20. Shabaev V.S., Orazmagomedova I.V., Mazurok V.A., Berezina A.V., Bautin A.E., Vasilyeva L.G. et al. Morphological and Functional Alterations of Respiratory Muscle Performance and Spirometry Parameters in Patients with Congestive Heart Failure. General Reanimatology. 2023;19(5):39–45. DOI: 10.15360/1813-9779-2023-5-2344

21. Shabaev V.S., Orazmagomedova I.V., Mazurok V.A., Berezina A.V., Bautin A.E., Vasilyeva L.G. et al. Diaphragmatic dysfunction in patients with chronic heart failure. Russian Journal of Anaesthesiology and Reanimatology. 2023;5:44–51. DOI: 10.17116/anaesthesiology202305144

22. Arutyunov A.G., Ilyina K.V., Arutyunov G.P., Kolesnikova E.A., Pchelin V.V., Kulagina N.P. et al. Morphofunctional Features of The Diaphragm in Patients With Chronic Heart Failure. Kardiologiia. 2019;59(1):12–21. DOI: 10.18087/cardio.2019.1.2625

23. Agostoni P, Pellegrino R, Conca C, Rodarte JR, Brusasco V. Exercise hyperpnea in chronic heart failure: relationships to lung stiffness and expiratory flow limitation. Journal of Applied Physiology. 2002;92(4):1409–16. DOI: 10.1152/japplphysiol.00724.2001

24. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: Failure of the Frank-Starling mechanism. Journal of the American College of Cardiology. 1991;17(5):1065–72. DOI: 10.1016/0735-1097(91)90832-T

25. Lalande S, Johnson BD. Breathing strategy to preserve exercising cardiac function in patients with heart failure. Medical Hypotheses. 2010;74(3):416–21. DOI: 10.1016/j.mehy.2009.09.030

26. Mcelvaney G, Blackie S, Morrison NJ, Wilcox PG, Fairbarn MS, Pardy RI. Maximal Static Respiratory Pressures in the Normal Elderly. American Review of Respiratory Disease. 1989;139(1):277–81. DOI: 10.1164/ajrccm/139.1.277

27. Taya M, Amiya E, Hatano M, Saito A, Nitta D, Maki H et al. Clinical importance of respiratory muscle fatigue in patients with cardiovascular disease. Medicine. 2020;99(34):e21794. DOI: 10.1097/MD.0000000000021794

28. Chua TP, Ponikowski P, Harrington D, Anker SD, Webb-Peploe K, Clark AL et al. Clinical Correlates and Prognostic Significance of the Ventilatory Response to Exercise in Chronic Heart Failure. Journal of the American College of Cardiology. 1997;29(7):1585–90. DOI: 10.1016/S0735-1097(97)00078-8

29. Murias G, Blanch L, Lucangelo U. The physiology of ventilation. Respiratory Care. 2014;59(11):1795–807. DOI: 10.4187/respcare.03377

30. Sullivan MJ, Higginbotham MB, Cobb FR. Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation. 1988;77(3):552–9. DOI: 10.1161/01.CIR.77.3.552

31. Smith JR, Olson TP. Ventilatory constraints influence physiological dead space in heart failure. Experimental Physiology. 2019;104(1):70–80. DOI: 10.1113/EP087183

32. Smith JR, Joyner MJ, Curry TB, Borlaug BA, Keller-Ross ML, Van Iterson EH et al. Locomotor muscle group III/IV afferents constrain stroke volume and contribute to exercise intolerance in human heart failure. The Journal of Physiology. 2020;598(23):5379–90. DOI: 10.1113/JP280333

33. Woods PR, Olson TP, Frantz RP, Johnson BD. Causes of Breathing Inefficiency During Exercise in Heart Failure. Journal of Cardiac Failure. 2010;16(10):835–42. DOI: 10.1016/j.cardfail.2010.05.003

34. Matsumoto A, Itoh H, Eto Y, Kobayashi T, Kato M, Omata M et al. End-tidal CO2 pressure decreases during exercise in cardiac patients. Journal of the American College of Cardiology. 2000;36(1):242–9. DOI: 10.1016/S0735-1097(00)00702-6

35. Van Iterson EH, Johnson BD, Borlaug BA, Olson TP. Physiological dead space and arterial carbon dioxide contributions to exercise ventilatory inefficiency in patients with reduced or preserved ejection fraction heart failure. European Journal of Heart Failure. 2017;19(12):1675–85. DOI: 10.1002/ejhf.913

36. Wensel R, Francis DP, Georgiadou P, Scott A, Genth-Zotz S, Anker SD et al. Exercise hyperventilation in chronic heart failure is not caused by systemic lactic acidosis. European Journal of Heart Failure. 2005;7(7):1105–11. DOI: 10.1016/j.ejheart.2004.12.005

37. Javaheri S, Badr MS. Central sleep apnea: pathophysiologic classification. Sleep. 2023;46(3):zsac113. DOI: 10.1093/sleep/zsac113

38. Benveniste Y. On the decay of end effects in conduction phenomena: A sandwich strip with imperfect interfaces of low or high conductivity. Journal of Applied Physics. 1999;86(3):1273–9. DOI: 10.1063/1.370881

39. Del Rio R. The carotid body and its relevance in pathophysiology. Experimental Physiology. 2015;100(2):121–3. DOI: 10.1113/expphysiol.2014.079350

40. Giannoni A, Emdin M, Bramanti F, Iudice G, Francis DP, Barsotti A et al. Combined Increased Chemosensitivity to Hypoxia and Hypercapnia as a Prognosticator in Heart Failure. Journal of the American College of Cardiology. 2009;53(21):1975–80. DOI: 10.1016/j.jacc.2009.02.030

41. Iturriaga R. Translating carotid body function into clinical medicine. The Journal of Physiology. 2018;596(15):3067–77. DOI: 10.1113/JP275335

42. Del Rio R, Moya EA, Iturriaga R. Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. European Respiratory Journal. 2010;36(1):143–50. DOI: 10.1183/09031936.00158109

43. Rey S, Del Rio R, Iturriaga R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Research. 2006;1086(1):152–9. DOI: 10.1016/j.brainres.2006.02.082

44. Barrett-O’Keefe Z, Lee JF, Berbert A, Witman MAH, Nativi-Nicolau J, Stehlik J et al. Metaboreceptor activation in heart failure with reduced ejection fraction: Linking cardiac and peripheral vascular haemodynamics. Experimental Physiology. 2018;103(6):807–18. DOI: 10.1113/EP086948

45. Roberto S, Mulliri G, Milia R, Solinas R, Pinna V, Sainas G et al. Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction. Journal of Applied Physiology. 2017;122(2):376–85. DOI: 10.1152/japplphysiol.00645.2016

46. Olson TP, Joyner MJ, Dietz NM, Eisenach JH, Curry TB, Johnson BD. Effects of respiratory muscle work on blood flow distribution during exercise in heart failure. The Journal of Physiology. 2010;588(13):2487–501. DOI: 10.1113/jphysiol.2009.186056

47. Smith JR, Berg JD, Curry TB, Joyner MJ, Olson TP. Respiratory muscle work influences locomotor convective and diffusive oxygen transport in human heart failure during exercise. Physiological Reports. 2020;8(12):e14484. DOI: 10.14814/phy2.14484

48. Gandevia SC. Neural mechanisms underlying the sensation of breathlessness: kinesthetic parallels between respiratory and limb muscles. Australian and New Zealand Journal of Medicine. 1988;18(1):83–91. DOI: 10.1111/j.1445-5994.1988.tb02252.x

49. Allen DG, Westerblad H. Role of phosphate and calcium stores in muscle fatigue. The Journal of Physiology. 2001;536(3):657–65. DOI: 10.1111/j.1469-7793.2001.t01-1-00657.x


Review

For citations:


Begrambekova Yu.L. Remodeling of the External Respiratory System in Chronic Heart Failure - a Factor of Pathogenesis and a Therapeutic Target. Kardiologiia. 2025;65(1):41-49. (In Russ.) https://doi.org/10.18087/cardio.2025.1.n2767

Views: 740


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)