ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Relationship between levels of sex hormones and response to cardiac resynchronisation therapy in men

https://doi.org/10.18087/cardio.2464

Abstract

Aim. To study the relationship between levels of sex hormones and effectiveness of cardiac resynchronisation therapy (CRT) in men with chronic heart failure (CHF). Materials and methods: The best response to CRT (mean time, 38 [19,0;53,7] months) was identified by a maximum decrease in left ventricular end-systolic volume (LVESV) in 58 men (mean age, 54.8±9.6) with CHF (61% IHD). Based on testosterone (TES) level, patients were divided into group 1 (n=28; 48%) - TES < median value (13.8 nmol/l) and group 2 (n=30; 52%) - TES > median value. Exercise tolerance (ET), echocardiography (EchoCG) parameters, plasma levels of NT-proBNP, interleukin (IL) - 1ß, IL-6, IL-10, tumor necrosis factor a (TNF-a), С-reactive peptide (CRP), galectin-3 (Gal-3), matrix metalloprotease-9 (ММР-9), tissue inhibitors of metalloproteinases TIMP-1, TIMP-4, and the indexes MMP-9/TIMP-1 and MMP-9/TIMP-4 were evaluated in dynamics. Levels of TES, progesterone (PGN), dehydroepiandrosterone sulphate (DHEAS), and estradiol (Е2) were measured at baseline. Based on LVESV changes, non-responders (LVESV decrease by <15%), responders (LVESV decrease by >15% but <30%), and super-responders (LVESV decrease by >30%) were identified. Results: In group 2, atrial fibrillation (р=0.064) and radiofrequency ablation of atrioventricular connection (р=0.014) were observed more frequently; incidence of diabetes mellitus was lower (р=0.017); QRS was smaller (р=0.001); ET was higher both at baseline (р=0.022) and in dynamics (р=0.018); numbers of responders and super-responders were greater (р=0.007); levels of PGN (р=0.028), Il-1ß (р=0.020), IL-10 (р=0.013), TNF- a (р=0.006) were higher; and E2/TES was lower (р=0.004). While EchoCG parameters did not differ at baseline, group 2 showed a tendency towards greater changes in LVESV (р=0.069) and LV end systolic dimension (р=0.087), and a greater increase in LV ejection fraction (р=0.007). In dynamics: In group 1, a decrease in NT-proBNP was observed (р=0.015); in group 2, decreases in IL-1ß (р=0.001), IL-6 (р=0.015), IL-10 (р=0.001), TNF-a (р=0.001), TIMP-1 (р=0.046), and Gal-3 (р=0.051) were observed. Levels of sex hormones were correlated with EchoCG parameters, biomarkers of immune inflammation, fibrosis, and NT-proBNP. The ROC analysis showed that a TES level not lower than 13.8 nmol/l was a predictor for a positive response to CRT with a sensitivity of 63.4% and specificity of 76.5% (AUC=0.687; р=0.026). Conclusions: High levels of TES and PGN were associated with better effectivity of CRT, higher ET, greater proportions of responders and super-responders, and reduced immune inflammation activity and fibrosis. A level of TES not lower than 13.8 nmol/l was a predictor for a positive response to CRT.

About the Authors

T. N. Enina
“Tyumen Cardiology Science Center”, Branch of the Federal State Budgetary Science Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation


V. A. Kuznetsov
“Tyumen Cardiology Science Center”, Branch of the Federal State Budgetary Science Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation


A. M. Soldatova
“Tyumen Cardiology Science Center”, Branch of the Federal State Budgetary Science Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation


I. S. Petelina
Municipal Clinical Hospital #5, Nizhny Novgorod
Russian Federation


D. V. Krinochkin
“Tyumen Cardiology Science Center”, Branch of the Federal State Budgetary Science Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation


S. M. Dyachkov
“Tyumen Cardiology Science Center”, Branch of the Federal State Budgetary Science Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation


A. Yu. Rychkov
“Tyumen Cardiology Science Center”, Branch of the Federal State Budgetary Science Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation


T. Yu. Gorbunova
“Tyumen Cardiology Science Center”, Branch of the Federal State Budgetary Science Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation


References

1. Arcopinto M., Salzano A., Bossone E., Ferrara F., Bobbio E., Sirico D. et al. Multiple hormone deficiencies in chronic heart failure. International Journal of Cardiology. 2015;184:421-3. DOI:10.1016/j. ij-card. 2015.02.055

2. Sacca L. Heart Failure as a Multiple Hormonal Deficiency Syndrome. Circulation: Heart Failure. 2009;2 (2):151-6. DOI10.1161/ CIRCHEARTFAILURE. 108.821892

3. Jankowska EA, Tkaczyszyn M., Kalicinska E., Banasiak W., Ponikowski P. Testosterone deficiency in men with heart failure: pathophysiology and its clinical, prognostic and therapeutic implications. Kardiologia Polska. 2014;72 (5):403-9. DOI:10.5603/KP. a2014.0025

4. Jankowska EA, Filippatos G., Ponikowska B., Borodulin-Nadzieja L., Anker SD, Banasiak W. et al. Reduction in Circulating Testosterone Relates to Exercise Capacity in Men With Chronic Heart Failure. Journal of Cardiac Failure. 2009;15 (5):442-50. DOI:10.1016/j. cardfail. 2008.12.011

5. Rydlewska A., Maj J., Katkowski B., Biel B., Ponikowska B., Banasiak W. et al. Circulating testosterone and estradiol, autonomic balance and baroreflex sensitivity in middle-aged and elderly men with heart failure. The Aging Male. 2013;16 (2):58-66. DOI:10.3109/13685538. 2013.768979

6. Santos MR dos, Sayegh ALC, Groehs RVR, Fonseca G., Trombetta IC, Barretto ACP et al. Testosterone Deficiency Increases Hospital Readmission and Mortality Rates in Male Patients with Heart Failure. Arquivos Brasileiros de Cardiologia [Интернет]. 2015 [цитируется по 6 июль 2018 г.]; DOI:10.5935/abc. 20150078

7. Leisegang K., Henkel R. The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reproductive Biology and Endocrinology [Интернет]. 2018 [цитируется по 6 июль 2018 г.];16 (1). DOI:10.1186/s12958-018-0341-2

8. Malkin CJ, Pugh PJ, Jones RD, Kapoor D., Channer KS, Jones T.H. The Effect of Testosterone Replacement on Endogenous Inflammatory Cytokines and Lipid Profiles in Hypogonadal Men. The Journal of Clinical Endocrinology & Metabolism. 2004;89 (7):3313-8. DOI:10.1210/jc. 2003-031069

9. Wang W., Jiang T., Li C., Chen J., Cao K., Qi L-W et al. Will testosterone replacement therapy become a new treatment of chronic heart failure? A review based on 8 clinical trials. Journal of Thoracic Disease. 2016;8 (5):E269-77. DOI:10.21037/jtd. 2016.03.39

10. Wang X-F, Qu X-Q, Zhang T-T, Zhang J-F. Testosterone suppresses ventricular remodeling and improves left ventricular function in rats following myocardial infarction. Experimental and Therapeutic Medicine. 2015;9 (4):1283-91. DOI:10.3892/etm. 2015.2269

11. Enina T. N., Kuznetsov V. A., Soldatova A. M., Petelina T. I., Krinochkin D. V., Rychkov A. Yu. et al. Biochemical aspects of gender differences in response to cardiac resynchronization therapy. Russian Heart Journal. 2017;17 (2):103-9. DOI:10.18087/rhj. 2017.2.2323

12. Zusterzeel R., Spatz ES, Curtis JP, Sanders WE, Selzman KA, Pina IL et al. Cardiac resynchronization therapy in women versus men: observational comparative effectiveness study from the National Cardiovascular Data Registry. Circ Cardiovasc Qual Outcomes. 2015;8 (2 Suppl 1):S4-11. DOI:10.1161/CIRCOUTCOMES. 114.001548

13. Cheng Y-J, Zhang J., Li W-J, Lin X-X, Zeng W-T, Tang K. et al. More favorable response to cardiac resynchronization therapy in women than in men. Circ Arrhythm Electrophysiol. 2014;7 (5):807-15. DOI: 10.1161/CIRCEP. 113.001786

14. Biton Y., Zareba W., Goldenberg I., Klein H., McNitt S., Polonsky B. et al. Sex Differences in Long-Term Outcomes With Cardiac Resynchronization Therapy in Mild Heart Failure Patients With Left Bundle Branch Block. J. Am Heart Assoc. 2015;4 (7). DOI:10.1161/JAHA. 115.002013

15. Moriyama Y, Yasue H, Yoshimura M, Mizuno Y, Nishiyama K, Tsunoda R et al. The Plasma Levels of Dehydroepiandrosterone Sulfate Are Decreased in Patients with Chronic Heart Failure in Proportion to the Severity 1. The Journal of Clinical Endocrinology & Metabolism. 2000;85 (5):1834-40. DOI:10.1210/jcem. 85.5.6568

16. Mirdamadi A, Garakyaraghi M, Pourmoghaddas A, Bahmani A, Mahmoudi H, Gharipour M. Beneficial Effects of Testosterone Therapy on Functional Capacity, Cardiovascular Parameters, and Quality of Life in Patients with Congestive Heart Failure. BioMed Research International. 2014;2014:1-7. DOI:10.1155/2014/392432

17. Iellamo F, Volterrani M, Caminiti G, Karam R, Massaro R, Fini M et al. Testosterone Therapy in Women With Chronic Heart Failure. Journal of the American College of Cardiology. 2010;56 (16):1310 6. DOI:10.1016/j. jacc. 2010.03.090

18. Gray A., Feldman HA, Mckinlay JB, Longcope C. Age, Disease, and Changing Sex Hormone Levels in Middle-Aged Men: Results of the Massachusetts Male Aging Study*. The Journal of Clinical Endocrinology & Metabolism. 1991;73 (5):1016-25. DOI:10.1210/jcem-73-5-1016

19. Feldman HA, Longcope C., Derby CA, Johannes CB, Araujo AB, Coviello AD et al. Age Trends in the Level of Serum Testosterone and Other Hormones in Middle-Aged Men: Longitudinal Results from the Massachusetts Male Aging Study. The Journal of Clinical Endocrinology & Metabolism. 2002;87 (2):589-98. DOI:10.1210/jcem. 87.2.8201

20. Liu Z., Liu J., Shi X., Wang L., Yang Y., Tao M. Dynamic alteration of serum testosterone with aging: a cross-sectional study from Shanghai, China. Reproductive Biology and Endocrinology [Интернет]. 2015 [цитируется по 6 июль 2018 г.];13 (1). DOI: 10.1186/s 12958-015-0107-z

21. Shores MM, Matsumoto A.M. Testosterone, aging and survival: biomarker or deficiency. Current Opinion in Endocrinology & Diabetes and Obesity. 2014;21 (3):209-16. DOI:10.1097/MED. 0000000000000057

22. Culic V., Busic Z. Testosterone levels and heart failure in obese and non-obese men. International Journal of Cardiology. 2014;176 (3):1163-6. DOI:10.1016/j. ijcard. 2014.07.253

23. Busic Z., Culic V. Central and peripheral testosterone effects in men with heart failure: An approach for cardiovascular research. World Journal of Cardiology. 2015;7 (9):504. DOI:10.4330/wjc. v7. i9.504

24. Tsai W-C, Lee T-I, Chen Y-C, Kao Y-H, Lu Y-Y, Lin Y-K et al. Testosterone replacement increases aged pulmonary vein and left atrium arrhythmogenesis with enhanced adrenergic activity. International Journal of Cardiology. 2014;176 (1):110-8. DOI:10.1016/j. ijcard. 2014.06.054

25. Magnani JW, Moser CB, Murabito JM, Sullivan LM, Wang N., Ellinor PT et al. Association of Sex Hormones, Aging, and Atrial Fibrillation in Men: The Framingham Heart Study. Circulation: Arrhythmia and Electrophysiology. 2014;7 (2):307-12. DOI:10.1161/CIRCEP. 113.001322

26. Kinyua AW, Doan KV, Yang DJ, Huynh MKQ, Choi Y-H, Shin DM et al. Insulin Regulates Adrenal Steroidogenesis by Stabilizing SF-1 Activity. Scientific Reports [Интернет]. 2018 [цитируется по 6 июль 2018 г.];8 (1). DOI:10.1038/s41598-018-23298-2

27. Oikonomou E., Zografos T., Papamikroulis G-A, Siasos G., Vogiatzi G., Theofilis P. et al. Biomarkers in atrial fibrillation and heart failure. Curr Med Chem. 2017; DOI:10.2174/092986732466617083 0100424

28. Pathak R., Sen J., Mehta A., Wong C., Alasady M., Lau D. et al. Biomarkers and risk of atrial fibrillation: a systematic review and meta-analysis. Heart, Lung and Circulation. 2015;24: S185. DOI:10.1016/j. hlc. 2015.06.172

29. Norata GD, Tibolla G., Seccomandi PM, Poletti A., Catapano A.L. Dihydrotestosterone Decreases Tumor Necrosis Factor-а and Lipopoly-saccharide-Induced Inflammatory Response in Human Endothelial Cells. The Journal of Clinical Endocrinology & Metabolism. 2006;91 (2):546-54. DOI:10.1210/jc. 2005-1664

30. Corcoran MP, Meydani M., Lichtenstein AH, Schaefer EJ, Dillard A., Lamon-Fava S. Sex hormone modulation of proinflammatory cytokine and C-reactive protein expression in macrophages from older men and postmenopausal women. J. Endocrinol. 2010;206 (2):217-24. DOI: 10.1677/JOE-10-0057

31. Zhang Y-Z, Xing X-W, He B., Wang L-X. Effects of Testosterone on Cytokines and Left Ventricular Remodeling Following Heart Failure. Cellular Physiology and Biochemistry. 2007;20 (6):847-52. DOI:10.1159/000110444

32. Ishikawa T., Harada T., Kubota T., Aso T. Testosterone inhibits matrix metalloproteinase-1 production in human endometrial stromal cells in vitro. Reproduction. 2007;133 (6):1233-9. DOI:10.1530 /rep. 1.01089

33. Freeman BM, Mountain DJH, Brock TC, Chapman JR, Kirkpatrick SS, Freeman MB et al. Low testosterone elevates interleukin family cytokines in a rodent model: a possible mechanism for the potentiation ofvascular disease in androgen-deficient males. Journal of Surgical Research. 2014;190 (1):319-27. DOI:10.1016/j. jss. 2014.03.017

34. Oskui PM, French WJ, Herring MJ, Mayeda GS, Burstein S., Kloner R.A. Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Literature. Journal of the American Heart Association. 2013;2 (6):e000272 - e000272. DOI:10.1161/JAHA. 113.000272

35. Ayaz O., Howlett S.E. Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biology of Sex Differences [Интернет]. 2015 [цитируется по 6 июль 2018 г.];6 (1). DOI: 10.1186/s 13293-015-0027-9

36. Toma M., McAlister FA, Coglianese EE, Vidi V., Vasaiwala S., Bakal JA et al. Testosterone Supplementation in Heart Failure: A Meta-Analysis. Circulation: Heart Failure. 2012;5 (3):315-21. DOI: 10.1161 / CIRCHEARTFAILURE. 111.965632

37. Ukkola O., Huttunen T., Puurunen V-P, Piira O-P, Niva J., Lepojärvi S. et al. Total testosterone levels, metabolic parameters, cardiac remodeling and exercise capacity in coronary artery disease patients with different stages of glucose tolerance. Annals of Medicine. 2013;45 (3):206-12. DOI:10.3109/07853890.2012.711951

38. Zheng R., Cao L., Cao W., Chu X., Hu Y., Zhang H. et al. Risk Factors for Hypogonadism in Male Patients with Type 2 Diabetes. Journal of Diabetes Research. 2016;2016:1-8. DOI:10.1155/2016/5162167

39. Aboelnaga M., Elshahawy H. Prevalence and predictors for low total testosterone levels among male type 2 diabetic patients: an Egyptian experience. International Journal of Research in Medical Sciences. 2016;3381-7. DOI: 10.18203/2320-6012. ijrms20162298

40. Nilsson SE, Fransson E., Brismar K. Relationship between serum progesterone concentrations and cardiovascular disease, diabetes, and mortality in elderly Swedish men and women: An 8-Year prospective study. Gender Medicine. 2009;6 (3):433-43. DOI:10.1016/j. genm. 2009.09.011

41. Lei B., Mace B., Dawson HN, Warner DS, Laskowitz DT, James M.L. Anti-Inflammatory Effects of Progesterone in Lipopolysaccharide-Stimulated BV-2 Microglia. Peterson KE, редактор. PLoS ONE. 2014;9 (7):e103969. DOI:10.1371/journal. pone. 0103969

42. Goddard LM, Ton AN, Org T., Mikkola HKA, Iruela-Arispe M.L. Selective suppression of endothelial cytokine production by progesterone receptor. Vascular Pharmacology. 2013;59 (1-2):36-43. DOI:10.1016/j. vph. 2013.06.001

43. Quinkler M., Meyer B., Bumke-Vogt C., Grossmann C., Gruber U., Oelkers W. et al. Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor. Eur J. Endocrinol. 2002;146 (6):789-99. PMID:12039699

44. Elger W., Beier S., Pollow K., Garfield R., Shi SQ, Hillisch A. Conception and pharmacodynamic profile of drospirenone. Steroids. 2003,68 (10-13):891-905. PMID:14667981

45. Morrissy S., Xu B., Aguilar D., Zhang J., Chen Q.M. Inhibition of apoptosis by progesterone in cardiomyocytes: Progesterone induces cytoprotection. Aging Cell. 2010,9 (5):799-809. DOI:10.1111/j. 1474-9726.2010.00619. x

46. Uchinaka A., Kawaguchi N., Mori S., Hamada Y., Miyagawa S., Saito A. et al. Tissue inhibitor of metalloproteinase-1 and -3 improves cardiac function in an ischemic cardiomyopathy model rat. Tissue Eng Part A. 2014,20 (21-22):3073-84. DOI:10.1089/ten. TEA. 2013.0763

47. Goncharov NP, Katsiya G.V. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review). Andrology and Genital Surgery. 2015,16 (1):13. DOI:10.17650/20 70-9781-2015-1-13-22

48. Шишкин А. Н., Худякова Н. В., Пчелин И. Ю., Иванов Н. В. Патогенетические аспекты кардиоваскулярных эффектов эстрогенов. Артериальная Гипертензия. 2015,21 (4):349-55.

49. Bowling MR, Xing D., Kapadia A., Chen Y-F, Szalai AJ, Oparil S. et al. Estrogen Effects on Vascular Inflammation Are Age Dependent: Role of Estrogen Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014,34 (7):1477-85. DOI: 10.1161/ATVB AHA. 114.303629

50. Rothman MS, Carlson NE, Xu M., Wang C., Swerdloff R., Lee P. et al. Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in postmenopausal women measured by liquid chromatography - tandem mass spectrometry. Steroids. 2011,76 (1-2):177-82. DOI:10.1016/j. steroids. 2010.10.010

51. Калиниченко С. Ю., Тюзиков И. А. Практическая андрология. -М.: Практическая медицина, 2009. 400 с. [Kalinichenko S. Yu., Tyuzikov I. A. Practical andrology. - M.: Practical medicine, 2009. -400p.] ISBN: 978-5-98811-136-8

52. Maggio M., Ceda GP, Lauretani F., Bandinelli S., Metter EJ, Artoni A. et al. Estradiol and Inflammatory Markers in Older Men. The Journal of Clinical Endocrinology & Metabolism. 2009,94 (2):518-22. DOI:10.1210/jc. 2008-0940

53. Maggio M., Basaria S., Ble A., Lauretani F., Bandinelli S., Ceda GP et al. Correlation between Testosterone and the Inflammatory Marker Soluble Interleukin-6 Receptor in Older Men. TheJournal of Clinical Endocrinology & Metabolism. 2006,91 (1):345-7. DOI:10.1210/jc. 2005-1097

54. Xing D., Oparil S., Yu H., Gong K., Feng W., Black J. et al. Estrogen Modulates NFkB Signaling by Enhancing LcBa Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-ß. Kovats S., редактор. PLoS ONE. 2012,7 (6):e36890. DOI:10.1371/journal. pone. 0036890

55. Xing D., Feng W., Miller AP, Weathington NM, Chen Y-F, Novak L. et al. Estrogen modulates TNF-a-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-β activation. American Journal of Physiology-Heart and Circulatory Physiology. 2007,292 (6):H2607-12. DOI:10.1152/ajpheart. 01107.2006

56. Janicki J., McLarty J., Li J., Levick S. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts. Journal of Inflammation Research. 2013,99. DOI:10.2147/JIR. S48422

57. Zhao Z., Wang H., Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction. Am J. Physiol Heart Circ Physiol. 2014,306 (5):H628-640. DOI: 10.1152/ajpheart. 00859.2013

58. Dai W., Ming W., Li Y., Zheng H., Wei C., Rui Z. et al. Synergistic Effect of a Physiological Ratio of Estradiol and Testosterone in the Treatment of Early-stage Atherosclerosis. Archives of Medical Research. 2015,46 (8):619-29. DOI:10.1016/j. arcmed. 2015.11.003


Review

For citations:


Enina T.N., Kuznetsov V.A., Soldatova A.M., Petelina I.S., Krinochkin D.V., Dyachkov S.M., Rychkov A.Yu., Gorbunova T.Yu. Relationship between levels of sex hormones and response to cardiac resynchronisation therapy in men. Kardiologiia. 2018;58(7S):24-35. (In Russ.) https://doi.org/10.18087/cardio.2464

Views: 918


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)