Comparative analysis of tryptophan and downstream metabolites of the kynurenine and serotonin pathways in patients with arterial hypertension and coronary artery disease
https://doi.org/10.18087/cardio.2022.11.n2283
Abstract
Aim To compare serum concentrations of tryptophane (Trp) and its metabolites in subjects with no cardiovascular disease (CVD) and patients with СVD, including arterial hypertension (AH) and ischemic heart disease (IHD).
Material and methods This study included 131 participants; 58 participants (11 of them with documented peripheral atherosclerosis) were included into the AH group, 46 participants were included into the IHD group, and 27 participants with no signs of CVD were included into the control group. Plasma concentrations of Trp and its metabolites were measured by high-performance liquid chromatography in combination with a triple quadrupole analyzer.
Results Comparison of the three study groups revealed significant differences in concentrations of Trp (р=0.029), kynurenine (p<0.001), kynurenine/Trp ratio (p<0.001), quinolinic acid (р=0.007), kynurenic acid (р=0.003), serotonin (p<0.001), and 5‑hydroxyindoleacetic acid (5‑HIAA) (р=0.011). When the AH group was subdivided into subgroups without and with documented peripheral atherosclerosis, the intergroup differences remained for concentrations of kynurenine, kynurenine/Trp ratio, quinolinic acid, kynurenic acid, serotonin, and 5‑HIAA. Also, correlations were found between concentrations of Trp metabolites and laboratory and instrumental data, primarily inflammatory markers.
Conclusion Analysis of serum concentrations of Trp and its metabolites in CVD patients showed increases in kynurenine, kynurenine/Trp ratio, quinolinic acid, kynurenic acid, and 5‑HIAA along with decreases in concentrations of Trp and serotonin in the groups of AH, AH with documented peripheral atherosclerosis, and IHD.
About the Authors
M. V. KozhevnikovaRussian Federation
PhD, Professor of the Department of Hospital Therapy No. 1 of the Institute of Clinical Medicine named after N.V. Sklifosovsky
Moscow, Russia
A. V. Krivova
Russian Federation
PhD-student, senior laboratory assistant of the Department of Hospital Therapy No. 1 of the Institute of Clinical Medicine named after N.V. Sklifosovsky
Moscow, Russia
E. O. Korobkova
Russian Federation
PhD, Assistant of the Department of Hospital Therapy No. 1 of the Institute of Clinical Medicine named after N.V. Sklifosovsky
Moscow, Russia
A. A. Ageev
Russian Federation
PhD-student, assistant of the Department of Hospital Therapy No. 1 of the Institute of Clinical Medicine named after N.V. Sklifosovsky
Moscow, Russia
K. M. Shestakova
Russian Federation
PhD, Senior Researcher, Laboratory of Pharmacokinetics and Metabolomic Analysis Institute of Translational Medicine and Biotechnology
Moscow, Russia
N. E. Moskaleva
Russian Federation
PhD, Leading Researcher, Laboratory of Pharmacokinetics and Metabolomic Analysis Institute of Translational Medicine and Biotechnology
Moscow, Russia
S. A. Appolonova
Russian Federation
PhD, Associate Professor, Head of the Laboratory of Pharmacokinetics and Metabolomic Analysis of the Institute of Translational Medicine and Biotechnology
Moscow, Russia
E. V. Privalova
Russian Federation
Doctor of Medical Sciences, Professor of the Department of Hospital Therapy No. 1 of the Institute of Clinical Medicine named after N.V. Sklifosovsky
Moscow, Russia
Yu. N. Belenkov
Russian Federation
Academician of the RAS, Professor, Doctor of Medical Sciences, Head of the Department of Hospital Therapy No. 1 of the N.V. Sklifosovsky
Moscow, Russia
References
1. Nitz K, Lacy M, Atzler D. Amino Acids and Their Metabolism in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2019;39(3):319–30. DOI: 10.1161/ATVBAHA.118.311572.
2. Anti-inflammatory therapy with kanakinumab for the treatment of atherosclerosis-related diseases: results of a double-blind placebo-controlled study CANTOS (Canakinumab Antiinflammatory Thrombosis Outcome Study). Evidence-based Cardiology. 2017;10(3):11–6.
3. Lutgens E, Atzler D, Doring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. European Heart Journal. 2019;40(48):3937–46. DOI: 10.1093/eurheartj/ehz283.
4. Getsina M.L., Chernevskaya E.A., Beloborodova N.V. The role of human and microbial metabolites of triptophane in severe diseases and critical ill (review). Journal of Clinical Practice. 2020;11(1):92–102.
5. Wei J, Zhang Z, Du Y, Yang X, Zhao L, Ni P et al. A combination of neuroimaging and plasma metabolomic analysis suggests inflammation is associated with white matter structural connectivity in major depressive disorder. Journal of Affective Disorders. 2022;318:7–15. DOI: 10.1016/j.jad.2022.08.108.
6. Mendelsohn D, Riedel WJ, Sambeth A. Effects of acute tryptophan depletion on memory, attention and executive functions: A systematic review. Neuroscience & Biobehavioral Reviews. 2009;33(6):926–52. DOI: 10.1016/j.neubiorev.2009.03.006.
7. Hue JJ, Graor H, Zarei M, Katayama ES, Ji K, Hajihassani O et al. IDO1 is a therapeutic target for pancreatic cancer-associated depression. Molecular Cancer Therapeutics. 2022;MCT-22-0055. [Epub ahead of print]. DOI: 10.1158/1535-7163.MCT-22-0055.
8. Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D. Decreased Serum Tryptophan Concentration Predicts Poor Prognosis in Malignant Melanoma Patients. Dermatology. 2007;214(1):8–14. DOI: 10.1159/000096906.
9. Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT et al. An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. International Journal of Molecular Sciences. 2022;23(11):6300. DOI: 10.3390/ijms23116300.
10. Karimi Z, Chenari M, Rezaie F, Karimi S, Parhizgari N, Mokhtari-Azad T. Proposed Pathway Linking Respiratory Infections with Depression. Clinical Psychopharmacology and Neuroscience. 2022;20(2):199–210. DOI: 10.9758/cpn.2022.20.2.199.
11. Pertovaara M, Raitala A, Juonala M, Lehtimaki T, Huhtala H, Oja SS et al. Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: the Cardiovascular Risk in Young Finns Study. Clinical and Experimental Immunology. 2007;148(1):106–11. DOI: 10.1111/j.1365-2249.2007.03325.x.
12. Kobalava Zh.D., Konradi A.O., Nedogoda S.V., Shlyakhto E.V., Arutyunov G.P., Baranova E.I. et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):149– 218. DOI: 10.15829/1560-4071-2020-3-3786.
13. Barbarash O.L., Karpov Yu.A., Kashtalap V.V., Boshchenko A.A., Ruda M.Ya., Akchurin R.S. et al. 2020 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2020;25(11):201–50. DOI: 10.15829/1560-4071-2020-4076.
14. Yu E, Ruiz-Canela M, Guasch-Ferre M, Zheng Y, Toledo E, Clish CB et al. Increases in Plasma Tryptophan Are Inversely Associated with Incident Cardiovascular Disease in the Prevencion con Dieta Mediterranea (PREDIMED) Study. The Journal of Nutrition. 2017;147(3):314–22. DOI: 10.3945/jn.116.241711.
15. Polyzos KA, Ketelhuth DFJ. The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease: An emerging field. Hamostaseologie. 2015;35(2):128–36. DOI: 10.5482/HAMO-14-10-0052.
16. Murr C, Grammer TB, Kleber ME, Meinitzer A, Marz W, Fuchs D. Low serum tryptophan predicts higher mortality in cardiovascular disease. European Journal of Clinical Investigation. 2015;45(3):247–54. DOI: 10.1111/eci.12402.
17. Song P, Ramprasath T, Wang H, Zou M-H. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cellular and Molecular Life Sciences. 2017;74(16):2899–916. DOI: 10.1007/s00018-017-2504-2.
18. Gaspar R, Halmi D, Demjan V, Berkecz R, Pipicz M, Csont T. Kynurenine Pathway Metabolites as Potential Clinical Biomarkers in Coronary Artery Disease. Frontiers in Immunology. 2022;12:768560. DOI: 10.3389/fimmu.2021.768560.
19. Savitz J. The kynurenine pathway: a finger in every pie. Molecular Psychiatry. 2020;25(1):131–47. DOI: 10.1038/s41380-019-0414-4.
20. Fazio F, Carrizzo A, Lionetto L, Damato A, Capocci L, Ambrosio M et al. Vasorelaxing Action of the Kynurenine Metabolite, Xanthurenic Acid: The Missing Link in Endotoxin-Induced Hypotension? Frontiers in Pharmacology. 2017;8:214. DOI: 10.3389/fphar.2017.00214.
21. Ouyang L, Yu C, Xie Z, Su X, Xu Z, Song P et al. Indoleamine 2,3-Dioxygenase 1 Deletion–Mediated Kynurenine Insufficiency in Vascular Smooth Muscle Cells Exacerbates Arterial Calcification. Circulation. 2022;145(24):1784–98. DOI: 10.1161/CIRCULATIONAHA.121.057868.
22. Farouk A, Hamed RA, Elsawy S, Abd El Hafez NF, Moftah FM, Nassar MAY et al. Measuring the Systemic Inflammatory Response to On- and Off-Pump Coronary Artery Bypass Graft (CABG) Surgeries Using the Tryptophan/Kynurenine Pathway. Journal of Investigative Surgery. 2022;35(8):1621–5. DOI: 10.1080/08941939.2022.2084188.
23. Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A et al. Immune activation and degradation of tryptophan in coronary heart disease: Tryptophan in coronary heart disease. European Journal of Clinical Investigation. 2003;33(7):550–4. DOI: 10.1046/j.1365-2362.2003.01186.x.
24. Herberth G, Offenberg K, Rolle-Kampczyk U, Bauer M, Otto W, Roder S et al. Endogenous metabolites and inflammasome activity in early childhood and links to respiratory diseases. Journal of Allergy and Clinical Immunology. 2015;136(2):495–7. DOI: 10.1016/j.jaci.2015.01.022.
25. Trabado S, Al-Salameh A, Croixmarie V, Masson P, Corruble E, Feve B et al. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PLOS ONE. 2017;12(3):e0173615. DOI: 10.1371/journal.pone.0173615.
Supplementary files
![]() |
1. Сравнительный анализ содержания триптофана и метаболитов кинуренинового и серотонинового путей у пациентов с артериальной гипертензией и ишемической болезнью сердца. Дополнительные материалы | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(108KB)
|
Indexing metadata ▾ |
![]() |
2. Comparative analysis of tryptophan and downstream metabolites of the kynurenine and serotonin pathways in patients with arterial hypertension and coronary artery disease | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(92KB)
|
Indexing metadata ▾ |
Review
For citations:
Kozhevnikova M.V., Krivova A.V., Korobkova E.O., Ageev A.A., Shestakova K.M., Moskaleva N.E., Appolonova S.A., Privalova E.V., Belenkov Yu.N. Comparative analysis of tryptophan and downstream metabolites of the kynurenine and serotonin pathways in patients with arterial hypertension and coronary artery disease. Kardiologiia. 2022;62(11):40-48. https://doi.org/10.18087/cardio.2022.11.n2283