ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Associations of adipokines and metabolic hormones with low-density lipoprotein hypercholesterolemia in men and women under 45 years of age

https://doi.org/10.18087/cardio.2022.11.n2239

Abstract

Aim    To study the adipokine profile in young people with hypercholesterolemia and low-density lipoproteins (LDL) and to evaluate the relationship between concentrations of LDL cholesterol (LDL-C) and metabolic hormones in men and women younger than 45 years. 
Material and methods    This study included 304 subjects (group 1, 56 men with LDL-C concentration <2.1 mmol/l; group 2, 87 men with LDL-C concentration ≥4.2 mmol/l; group 3, 90 women with LDL-C concentration <2.1 mmol/l; and group 4, 71 women with LDL-C concentration ≥4.2 mmol/l). Serum concentrations of total cholesterol (C), triglycerides (TG), high-density lipoprotein C, and glucose were measured by an enzymatic assay with ThermoFisher Scientific kits and a KonelabPrime 30i biochemical analyzer. LDL-C was calculated using the Friedewald’s formula. Concentrations of amylin, C-peptide, ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 (GLP-1), glucagon, interleukin 6, insulin, leptin, monocyte chemotactic protein 1 (MCP-1), pancreatic polypeptide (PP), peptide YY (PYY), tumor necrosis factor alpha (TNF-α), adiponectin, adipsin, lipocalin-2, plasminogen activator inhibitor 1 (PAI-1), and resistin were measured by multiplex analysis (Human Metabolic Hormone V3 and Human Adipokine Panel 1 panels).
Results    The groups differed in traditional cardiometabolic risk factors. In the male and female patient groups with LDL-C ≥4.2 mmol/l, the prevalence of impaired fasting glucose, incidence of insulin resistance, TG, and TC were higher than in subjects with LDL-C <2.1 mmol/l. The odds for the presence of LDL hypercholesterolemia (LDL-C ≥4.2 mmol/l) were significantly associated with increased concentrations of C-peptide and lipocalin-2 in men and with increased concentrations of lipocalin-2 and decreased concentrations of GLP-1 in women (р<0.05).
Conclusion    Increased concentrations of LDL-C in young people were associated with changes in the adipokine profile and with the presence of metabolic syndrome components. These results were confirmed by changes in blood concentrations of metabolic markers that characterize disorders of metabolic processes.

About the Authors

Е. V. Kashtanova
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

Leading researcher Laboratory of Clinical Biochemical and Hormonal Studies on Internal Diseases

Novosibirsk, Russia



Yа. V. Polonskaya
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

Senior Researcher at the Laboratory of Clinical Biochemical and Hormonal Studies of Internal Diseases

Novosibirsk, Russia



V. S. Shramko
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

Researcher at the Laboratory of Clinical Biochemical and Hormonal Studies of Internal Diseases

Novosibirsk, Russia



L. V. Shcherbakova
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

Senior Researcher at the Laboratory of Clinical-Populational and Prophylactic Studies on Internal and Endocrine Diseases

Novosibirsk, Russia



Е. М. Stakhneva
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

Senior Researcher at the Laboratory of Clinical Biochemical and Hormonal Studies of Internal Diseases

Novosibirsk, Russia



E. V. Sadovski
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

Researcher at the Laboratory of Clinical Biochemical and Hormonal Studies of Internal Diseases

Novosibirsk, Russia



A. N. Spiridonov
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

postgraduate IIPM – Branch of IC&G SB RAS

Novosibirsk, Russia



Yu. I. Ragino
Research Institute of Therapy and Preventive Medicine, Affiliation of the Federal Research Center Institute of Cytology and Genetics
Russian Federation

Head of IIPM – Branch of IC&G SB RAS

Novosibirsk, Russia



References

1. Kallio P, Pahkala K, Heinonen OJ, Tammelin TH, Palve K, Hirvensalo M et al. Physical inactivity from youth to adulthood and adult cardiometabolic risk profile. Preventive Medicine. 2021;145:106433. DOI: 10.1016/j.ypmed.2021.106433

2. Kim JS, Chen Z, Alderete TL, Toledo-Corral C, Lurmann F, Berhane K et al. Associations of air pollution, obesity and cardiometabolic health in young adults: The Meta-AIR study. Environment International. 2019;133(Pt A):105180. DOI: 10.1016/j.envint.2019.105180

3. Zvolinskaya E.Yu., Kimitsidi M.G., Alexandrov A.A., Serazhim A.A. Results of one-year preventive intervention against cardiovascular risk factors in first-year students. Russian Journal of Preventive Medicine and Public Health. 2017;20(5):47–53. DOI: 10.17116/profmed201720547-53

4. Joint committee for guideline revision. 2016 Chinese guidelines for the management of dyslipidemia in adults. Journal of Geriatric Cardiology. 2018;15(1):1–29. DOI: 10.11909/j.issn.1671-5411.2018.01.011

5. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Revista Espanola De Cardiologia (English Ed.). 2017;70(2):115. DOI: 10.1016/j.rec.2017.01.002

6. Lu X, Liu J, Hou F, Liu Z, Cao X, Seo H et al. Cholesterol induces pancreatic β cell apoptosis through oxidative stress pathway. Cell Stress and Chaperones. 2011;16(5):539–48. DOI: 10.1007/s12192-011-0265-7

7. Li Z-Y, Wang P, Miao C-Y. Adipokines in inflammation, insulin resistance and cardiovascular disease. Clinical and Experimental Pharmacology and Physiology. 2011;38(12):888–96. DOI: 10.1111/j.1440-1681.2011.05602.x

8. Ahima RS, Flier JS. Leptin. Annual Review of Physiology. 2000;62(1):413–37. DOI: 10.1146/annurev.physiol.62.1.413

9. Van Dielen F, van’t Veer C, Schols A, Soeters P, Buurman W, Greve J. Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. International Journal of Obesity. 2001;25(12):1759–66. DOI: 10.1038/sj.ijo.0801825

10. Yamagishi S, Edelstein D, Du X, Kaneda Y, Guzman M, Brownlee M. Leptin Induces Mitochondrial Superoxide Production and Monocyte Chemoattractant Protein-1 Expression in Aortic Endothelial Cells by Increasing Fatty Acid Oxidation via Protein Kinase A. Journal of Biological Chemistry. 2001;276(27):25096–100. DOI: 10.1074/jbc.M007383200

11. Cooke JP, Oka RK. Does Leptin Cause Vascular Disease? Circulation. 2002;106(15):1904–5. DOI: 10.1161/01.CIR.0000036864.14101.1B

12. Konstantinides S, Schafer K, Koschnick S, Loskutoff DJ. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. Journal of Clinical Investigation. 2001;108(10):1533–40. DOI: 10.1172/JCI13143

13. O’Rourke L, Gronning LM, Yeaman SJ, Shepherd PR. Glucosedependent Regulation of Cholesterol Ester Metabolism in Macrophages by Insulin and Leptin. Journal of Biological Chemistry. 2002;277(45):42557–62. DOI: 10.1074/jbc.M202151200

14. Minokoshi Y, Kim Y-B, Peroni OD, Fryer LGD, Muller C, Carling D et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415(6869):339–43. DOI: 10.1038/415339a

15. Filkova M, Haluzik M, Gay S, Senolt L. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clinical Immunology. 2009;133(2):157–70. DOI: 10.1016/j.clim.2009.07.013

16. Jamaluddin MS, Yan S, Lu J, Liang Z, Yao Q, Chen C. Resistin Increases Monolayer Permeability of Human Coronary Artery Endothelial Cells. PLoS ONE. 2013;8(12):e84576. DOI: 10.1371/journal.pone.0084576

17. Libby P, Ridker PM, Hansson GK. Inflammation in Atherosclerosis: from pathophysiology to practice. Journal of the American College of Cardiology. 2009;54(23):2129–38. DOI: 10.1016/j.jacc.2009.09.009

18. Jialal I, Devaraj S, Adams-Huet B, Chen X, Kaur H. Increased Cellular and Circulating Biomarkers of Oxidative Stress in Nascent Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism. 2012;97(10):E1844–50. DOI: 10.1210/jc.2012-2498

19. De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends in Immunology. 2011;32(8):373–9. DOI: 10.1016/j.it.2011.05.004

20. Malo E, Ukkola O, Jokela M, Moilanen L, Kahonen M, Nieminen MS et al. Resistin Is an Indicator of the Metabolic Syndrome According to Five Different Definitions in the Finnish Health 2000 Survey. Metabolic Syndrome and Related Disorders. 2011;9(3):203–10. DOI: 10.1089/met.2010.0106

21. Zakovryashina I.N., Khaisheva L.A., Shlyk S.V. Study of resistin level and lipid profile in patients with ST-segment elevation due myocardial infarction, results of one-year follow-up. Atherosclerosis and Dyslipidemias. 2021;4(45):51–8. DOI: 10.34687/2219-8202.JAD.2021.04.0006

22. Abate N, Sallam H, Rizzo M, Nikolic D, Obradovic M, Bjelogrlic P et al. Resistin: An Inflammatory Cytokine. Role in Cardiovascular Diseases, Diabetes and the Metabolic Syndrome. Current Pharmaceutical Design. 2014;20(31):4961–9. DOI: 10.2174/1381612819666131206103102

23. Vazquez MJ, Gonzalez CR, Varela L, Lage R, Tovar S, Sangiao-Alvarellos S et al. Central Resistin Regulates Hypothalamic and Peripheral Lipid Metabolism in a Nutritional-Dependent Fashion. Endocrinology. 2008;149(9):4534–43. DOI: 10.1210/en.2007-1708

24. Singh AK, Tiwari S, Gupta A, Natu SM, Mittal B, Pant AB. Association of Resistin with Metabolic Syndrome in Indian Subjects. Metabolic Syndrome and Related Disorders. 2012;10(4):286–91. DOI: 10.1089/met.2011.0128

25. Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH, Kang MI et al. The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clinical Endocrinology. 2005;63(2):131–8. DOI: 10.1111/j.1365-2265.2005.02312.x

26. Owecki M, Nikisch E, Miczke A, Pupek-Musialik D, Sowinski J. Serum resistin is related to plasma HDL cholesterol and inversely correlated with LDL cholesterol in diabetic and obese humans. Neuro Endocrinology Letters. 2010;31(5):673–8. PMID: 21173741

27. Wang Y, Lam KSL, Kraegen EW, Sweeney G, Zhang J, Tso AW et al. Lipocalin-2 Is an Inflammatory Marker Closely Associated with Obesity, Insulin Resistance, and Hyperglycemia in Humans. Clinical Chemistry. 2007;53(1):34–41. DOI: 10.1373/clinchem.2006.075614

28. Wu G, Li H, Zhou M, Fang Q, Bao Y, Xu A et al. Mechanism and clinical evidence of lipocalin-2 and adipocyte fatty acid-binding protein linking obesity and atherosclerosis. Diabetes/Metabolism Research and Reviews. 2014;30(6):447–56. DOI: 10.1002/dmrr.2493

29. Ni J, Ma X, Zhou M, Pan X, Tang J, Hao Y et al. Serum lipocalin-2 levels positively correlate with coronary artery disease and metabolic syndrome. Cardiovascular Diabetology. 2013;12(1):176. DOI: 10.1186/1475-2840-12-176

30. Xiao Y, Xu A, Hui X, Zhou P, Li X, Zhong H et al. Circulating Lipocalin-2 and Retinol-Binding Protein 4 Are Associated with Intima-Media Thickness and Subclinical Atherosclerosis in Patients with Type 2 Diabetes. PLoS ONE. 2013;8(6):e66607. DOI: 10.1371/journal.pone.0066607

31. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J et al. Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology. 2003;14(10):2534–43. DOI: 10.1097/01.ASN.0000088027.54400.C6

32. de Carvalho JAM, Tatsch E, Hausen BS, Bollick YS, Moretto MB, Duarte T et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clinical Biochemistry. 2016;49(3):232–6. DOI: 10.1016/j.clinbiochem.2015.10.016

33. Ibragimov V.M.-E., Sarvilina I.V., Batyushin M.M., Aliskandiev A.M. On the role of lipocalin-2 protein in the progression of diabetic nephropathy and evaluation of the effectiveness of cytoflavin therapy in type-2 diabetes mellitus. Experimental and clinical pharmacology. 2020;83(3):15–22. DOI: 10.30906/0869-2092-2020-83-3-15-22

34. Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. Journal of Diabetes Investigation. 2013;4(2):108–30. DOI: 10.1111/jdi.12065

35. Holst JJ, Knop FK, Vilsboll T, Krarup T, Madsbad S. Loss of Incretin Effect Is a Specific, Important, and Early Characteristic of Type 2 Diabetes. Diabetes Care. 2011;34(Suppl 2):S251–7. DOI: 10.2337/dc11-s227

36. Wang X-L, Ye F, Li J, Zhu L-Y, Feng G, Chang X-Y et al. Impaired secretion of glucagon-like peptide 1 during oral glucose tolerance test in patients with newly diagnosed type 2 diabetes mellitus. Saudi Medical Journal. 2016;37(1):48–54. DOI: 10.15537/smj.2016.1.12035

37. Holst JJ. The Physiology of Glucagon-like Peptide 1. Physiological Reviews. 2007;87(4):1409–39. DOI: 10.1152/physrev.00034.2006

38. Nawaz SS, Siddiqui K. Plasminogen activator inhibitor-1 mediate downregulation of adiponectin in type 2 diabetes patients with metabolic syndrome. Cytokine: X. 2022;4(1):100064. DOI: 10.1016/j.cytox.2022.100064

39. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. International Journal of Obesity. 2004;28(11):1357–64. DOI: 10.1038/sj.ijo.0802778

40. Aso Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Frontiers in Bioscience. 2007;1(12):2957–66. DOI: 10.2741/2285


Review

For citations:


Kashtanova Е.V., Polonskaya Y.V., Shramko V.S., Shcherbakova L.V., Stakhneva Е.М., Sadovski E.V., Spiridonov A.N., Ragino Yu.I. Associations of adipokines and metabolic hormones with low-density lipoprotein hypercholesterolemia in men and women under 45 years of age. Kardiologiia. 2022;62(11):63-70. https://doi.org/10.18087/cardio.2022.11.n2239

Views: 748


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)