ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Coenzyme Q-10 in the treatment of patients with chronic heart failure and reduced left ventricular ejection fraction: systematic review and meta-analysis

https://doi.org/10.18087/cardio.2022.6.n2050

Abstract

Aim    The aim of the study was evaluation of the effect of the coenzyme Q10 (Q10) treatment on all-cause and cardiovascular mortality of patients with chronic heart failure (CHF). Q-10 increases the electron transfer in the mitochondrial respiratory chain and exerts anti-inflammatory and antioxidant effects. These effects improve the endothelial function and reduce afterload, which facilitates the heart pumping function. Patients with reduced left ventricular (LV) ejection fraction (EF) (CHFrEF) have low Q10.
Material and methods    Criteria of inclusion in the meta-analysis: 1) placebo-controlled studies; 2) enrollment of at least 100 patients; 3) publications after 2010, which implies an optimal basic therapy for CHF; 4) duration of at least 6 months; 5) reported cardiovascular and/or all-cause mortality; 6) using sufficient doses of Q10 (>100 mg/day). The search was performed in CENTRAL, MEDLINE, Embase, Web of Science, E-library, and ClinicalTrials.gov databases. All-cause mortality was the primary efficacy endpoint in this systematic review and the meta-analysis. The secondary endpoint was cardiovascular mortality. Meta-analysis was performed according to the Mantel-Haenszel methods. The Cochrane criterion (I2) was used for evaluation of statistical heterogeneity. The random effects model was used at I2≥50 %, whereas the fixed effects model was used at I2<50.
Results    Analysis of studies published from 01.01.2011 to 01.12.2021 identified 357 publications, 23 of which corresponded to the study topic, but only 6 (providing results of four randomized clinical trials, RCT) completely met the predefined criteria. The final analysis included results of managing 1139 patients (586 received Q10 and 553 received placebo). Risk of all-cause death was analyzed by data of four RCTs (1139 patients). The decrease in the risk associated with the Q10 treatment was 36 % (OR=0.64, 95 % CI 0.48–0.87, р=0.004). The heterogeneity of studies was low (Chi2=0.84; p=0.84; I2=0 %). Risk of cardiovascular mortality was analyzed by data of two RCTs (863 patients). The decrease in the risk associated with the Q10 treatment was significant, 55% (OR=0.45, 95 % CI: 0.32–0.64, р=0.00001). In this case, the data heterogeneity was also low (Chi2=0.41; p=0.52; I2=0 %).
Conclusion    The meta-analysis confirmed the beneficial effect of coenzyme Q10 on the prognosis of patients with CHFrEF receiving the recommended basic therapy.

 

About the Authors

V. Yu. Mareev
Medical Research and Educational Center, Lomonosov Moscow State University; School of Fundamental Medicine, Lomonosov Moscow State University
Russian Federation

Chief Researcher Medical Research and Education Center of Moscow State University M.V. Lomonosova,

Moscow, Russia



Yu. V. Mareev
Medical Research and Educational Center, Lomonosov Moscow State University; National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Chief Researcher Medical Research and Education Center of Moscow State University M.V. Lomonosova,

Moscow, Russia



Yu. L. Begrambekova
Medical Research and Educational Center, Lomonosov Moscow State University; School of Fundamental Medicine, Lomonosov Moscow State University
Russian Federation

Leading Researcher Medical Research and Education Center of Moscow State University M.V. Lomonosova

Moscow, Russia



References

1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2021;42(36):3599–726. DOI: 10.1093/eurheartj/ehab368

2. Heidenreich PA, Fonarow GC, Breathett K, Jurgens CY, Pisani BA, Pozehl BJ et al. 2020 ACC/AHA Clinical Performance and Quality Measures for Adults With Heart Failure. Journal of the American College of Cardiology. 2020;76(21):2527–64. DOI: 10.1016/j.jacc.2020.07.023

3. Mareev V.Yu., Fomin I.V., Ageev F.T., Begrambekova Yu.L., Vasyuk Yu.A., Garganeeva A.A. et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(6S):8–158. DOI: 10.18087/cardio.2475

4. Packer M, Zannad F. Do the Favorable Effects of Digoxin and SGLT2 Inhibitors Really Differ in Patients with Heart Failure and a Reduced Ejection Fraction? A Provocative Side-by-Side Examination of Trial Outcomes. Journal of Cardiac Failure. 2022;28(4):682–3. DOI: 10.1016/j.cardfail.2022.01.001

5. Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD et al. Effect of Ejection Fraction on Clinical Outcomes in Patients Treated With Omecamtiv Mecarbil in GALACTIC-HF. Journal of the American College of Cardiology. 2021;78(2):97–108. DOI: 10.1016/j.jacc.2021.04.065

6. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews. 2010;90(1):207–58. DOI: 10.1152/physrev.00015.2009

7. Riehle C, Weatherford ET, Wende AR, Jaishy BP, Seei AW, McCarty NS et al. Insulin receptor substrates differentially exacerbate insulinmediated left ventricular remodeling. JCI Insight. 2020;5(6):e134920. DOI: 10.1172/jci.insight.134920

8. Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. Journal of Clinical Investigation. 2010;120(5):1506–14. DOI: 10.1172/JCI40096

9. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac Energy Metabolism in Heart Failure. Circulation Research. 2021;128(10):1487–513. DOI: 10.1161/CIRCRESAHA.121.318241

10. Crane FL, Hatefi Y, Lester RL, Widmer C. Isolation of a quinone from beef heart mitochondria. Biochimica et Biophysica Acta. 1957;25:220–1. DOI: 10.1016/0006-3002(57)90457-2

11. MLA style. The Nobel Prize in Chemistry 1978. NobelPrize.org. Nobel Prize Outreach. [Интернет] Available at: https://www.nobelprize.org/prizes/chemistry/1978/summary/

12. Neubauer S. The Failing Heart — An Engine Out of Fuel. New England Journal of Medicine. 2007;356(11):1140–51. DOI: 10.1056/NEJMra063052

13. Greenberg S, Frishman WH. Co-Enzyme Q10: A New Drug for Cardiovascular Disease. The Journal of Clinical Pharmacology. 1990;30(7):596–608. DOI: 10.1002/j.1552-4604.1990.tb01862.x

14. Di Lorenzo A, Iannuzzo G, Parlato A, Cuomo G, Testa C, Coppola M et al. Clinical Evidence for Q10 Coenzyme Supplementation in Heart Failure: From Energetics to Functional Improvement. Journal of Clinical Medicine. 2020;9(5):1266. DOI: 10.3390/jcm9051266

15. Tsai K-L, Huang Y-H, Kao C-L, Yang D-M, Lee H-C, Chou H-Y et al. A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathways. The Journal of Nutritional Biochemistry. 2012;23(5):458–68. DOI: 10.1016/j.jnutbio.2011.01.011

16. Tomasetti M, Littarru GP, Stocker R, Alleva R. Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radical Biology and Medicine. 1999;27(9–10):1027–32. DOI: 10.1016/S0891-5849(99)00132-X

17. Åberg F, Appelkvist E-L, Dallner G, Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Archives of Biochemistry and Biophysics. 1992;295(2):230–4. DOI: 10.1016/0003-9861(92)90511-T

18. Pala R, Orhan C, Tuzcu M, Sahin N, Ali S, Cinar V et al. Coenzyme Q10 Supplementation Modulates NFκB and Nrf2 Pathways in Exercise Training. Journal of Sports Science & Medicine. 2016;15(1):196–203. PMID: 26957943

19. Ulla A, Mohamed MK, Sikder B, Rahman AT, Sumi FA, Hossain M et al. Coenzyme Q10 prevents oxidative stress and fibrosis in isoprenaline induced cardiac remodeling in aged rats. BMC Pharmacology and Toxicology. 2017;18(1):29. DOI: 10.1186/s40360-017-0136-7

20. Quinzii CM, López LC, Von‐Moltke J, Naini A, Krishna S, Schuelke M et al. Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. The FASEB Journal. 2008;22(6):1874–85. DOI: 10.1096/fj.07-100149

21. Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proceedings of the National Academy of Sciences. 1985;82(3):901–4. DOI: 10.1073/pnas.82.3.901

22. Molyneux SL, Florkowski CM, George PM, Pilbrow AP, Frampton CM, Lever M et al. Coenzyme Q10. Journal of the American College of Cardiology. 2008;52(18):1435–41. DOI: 10.1016/j.jacc.2008.07.044

23. McMurray JJV, Dunselman P, Wedel H, Cleland JGF, Lindberg M, Hjalmarson Å et al. Coenzyme Q10, Rosuvastatin, and Clinical Outcomes in Heart Failure. Journal of the American College of Cardiology. 2010;56(15):1196–204. DOI: 10.1016/j.jacc.2010.02.075

24. Sander S, Coleman CI, Patel AA, Kluger J, Michael White C. The Impact of Coenzyme Q10 on Systolic Function in Patients With Chronic Heart Failure. Journal of Cardiac Failure. 2006;12(6):464–72. DOI: 10.1016/j.cardfail.2006.03.007

25. Madmani ME, Yusuf Solaiman A, Tamr Agha K, Madmani Y, Shahrour Y, Essali A et al. Coenzyme Q10 for heart failure. Cochrane Database of Systematic Reviews. 2014;6:CD008684. DOI: 10.1002/14651858.CD008684.pub2

26. Mareev V.Yu., Minina Yu.V., Begrambekova Yu.L. KUDESan® (3% drops for oral use) in treatment of patieNts with heart failure: efficacy and safety In Combination with standard therapy (KUDESNIC). Design and results of a prospective, randomized, double-blind KUDESNIC study. Russian Heart Failure Journal. 2016;17(4):236–49. DOI: 10.18087/rhfj.2016.4.2257

27. Kalenikova E.I., Gorodetskaya E.A., Medvedev O.S. Bioavailability of coenzyme q10 in various pharmaceutical formulations. Pharmaceutical Chemistry Journal. 2009;43(8):41–4.

28. Kalenikova E.I., Gorodetskaya E.A., Medvedev O.S. The pharmacokinetics of coenzyme Q10. Russian Medical Journal. 2008;16(5):338–40.

29. Kharitonova E.V., Kalenikova E.I., Gorodetskaya E.A., Medvedev O.S. Pharmacokinetics of solubilized COQ10 in composition of QUDESAN at parenteral injection. Siberian Medical Review. 2013;6(84):26–9.

30. Alehagen U, Johansson P, Björnstedt M, Rosén A, Dahlström U. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: A 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. International Journal of Cardiology. 2013;167(5):1860–6. DOI: 10.1016/j.ijcard.2012.04.156

31. Alehagen U, Aaseth J, Johansson P. Reduced Cardiovascular Mortality 10 Years after Supplementation with Selenium and Coenzyme Q10 for Four Years: Follow-Up Results of a Prospective Randomized Double-Blind Placebo-Controlled Trial in Elderly Citizens. PLOS ONE. 2015;10(12):e0141641. DOI: 10.1371/journal.pone.0141641

32. Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D et al. The Effect of Coenzyme Q10 on Morbidity and Mortality in Chronic Heart Failure: results from Q-SYMBIO: a randomized double-blind trial. JACC: Heart Failure. 2014;2(6):641–9. DOI: 10.1016/j.jchf.2014.06.008

33. Mortensen AL, Rosenfeldt F, Filipiak KJ. Effect of coenzyme Q10 in Europeans with chronic heart failure: A sub-group analysis of the Q-SYMBIO randomized double-blind trial. Cardiology Journal. 2019;26(2):147–56. DOI: 10.5603/CJ.a2019.0022

34. DiNicolantonio JJ, Bhutani J, McCarty MF, O’Keefe JH. Coenzyme Q10 for the treatment of heart failure: a review of the literature. Open Heart. 2015;2(1):e000326. DOI: 10.1136/openhrt-2015-000326

35. Sharma A, Fonarow GC, Butler J, Ezekowitz JA, Felker GM. Coenzyme Q10 and Heart Failure: A State-of-the-Art Review. Circulation: Heart Failure. 2016;9(4):e002639. DOI: 10.1161/CIRCHEARTFAILURE.115.002639

36. Ezekowitz JA. Time to Energize Coenzyme Q 10 for Patients with Heart Failure? JACC: Heart Failure. 2014;2(6):650–2. DOI: 10.1016/j.jchf.2014.07.007

37. Mortensen SA. Coenzyme Q 10. JACC: Heart Failure. 2015;3(3):270–1. DOI: 10.1016/j.jchf.2014.12.006

38. Lei L, Liu Y. Efficacy of coenzyme Q10 in patients with cardiac failure: a meta-analysis of clinical trials. BMC Cardiovascular Disorders. 2017;17(1):196. DOI: 10.1186/s12872-017-0628-9

39. Zhao Q, Kebbati AH, Zhang Y, Tang Y, Okello E, Huang C. Effect of Coenzyme Q10 on the Incidence of Atrial Fibrillation in Patients With Heart Failure. Journal of Investigative Medicine. 2015;63(5):735–9. DOI: 10.1097/JIM.0000000000000202

40. Al Saadi T, Assaf Y, Farwati M, Turkmani K, Al-Mouakeh A, Shebli B и др. Coenzyme Q10 for heart failure. Cochrane Database of Systematic Reviews. 2021;2:CD008684. DOI: 10.1002/14651858.CD008684.pub3

41. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. DOI: 10.1136/bmj.l4898

42. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. DOI: 10.1136/bmj.n160

43. Cochrane Training. Cochrane Handbook for Systematic Reviews of Interventions. [Интернет] Available at: https://training.cochrane.org/handbook/current

44. Center for Healthcare Quality Assessment and Control of the Ministry of Health of the RF. Methodological recommendations for conducting meta-analysis. Moscow 2017. Av. at: https://rosmedex.ru/pub.

45. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34. DOI: 10.1136/bmj.315.7109.629

46. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343(jul22 1):d4002. DOI: 10.1136/bmj.d4002

47. Bomer N, Grote Beverborg N, Hoes MF, Streng KW, Vermeer M, Dokter MM et al. Selenium and outcome in heart failure. European Journal of Heart Failure. 2020;22(8):1415–23. DOI: 10.1002/ejhf.1644

48. Al-Mubarak AA, van der Meer P, Bomer N. Selenium, Selenoproteins, and Heart Failure: Current Knowledge and Future Perspective. Current Heart Failure Reports. 2021;18(3):122–31. DOI: 10.1007/s11897-021-00511-4

49. Center for Healthcare Quality Assessment and Control of the Ministry of Health of the RF. Methodological recommendations by scales. Moscow 2017. Av. at: https://rosmedex.ru/wp-content/uploads/2018/02/MR-po-shkalam.pdf.

50. Bouabdallaoui N, Tardif J-C, Waters DD, Pinto FJ, Maggioni AP, Diaz R et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). European Heart Journal. 2020;41(42):4092–9. DOI: 10.1093/eurheartj/ehaa659

51. Pessoa-Amorim G, Campbell M, Fletcher L, Horby P, Landray M, Mafham M et al. Making trials part of good clinical care: lessons from the RECOVERY trial. Future Healthcare Journal. 2021;8(2):e243–50. DOI: 10.7861/fhj.2021-0083


Review

For citations:


Mareev V.Yu., Mareev Yu.V., Begrambekova Yu.L. Coenzyme Q-10 in the treatment of patients with chronic heart failure and reduced left ventricular ejection fraction: systematic review and meta-analysis. Kardiologiia. 2022;62(6):3-14. https://doi.org/10.18087/cardio.2022.6.n2050

Views: 3097


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)