ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

The role of thrombin in the pathogenesis of atherosclerosis and its complications

https://doi.org/10.18087/cardio.2022.3.n1968

Abstract

Thrombin is a key regulator of the homeostasis system. Also, it actively participates in progression of various systemic diseases, including atherosclerosis. There is a large amount of experimental and clinical data on the involvement of thrombin in the pathogenesis of ischemic heart disease (IHD). Thus, studying thrombin activity regulation is promising. Also, the question whether it is possible to use biomarkers of thrombin activity as predictors of cardiovascular complications in IHD patients is relevant. The present review focuses on major mechanisms of thrombin functioning, its role in development and progression of atherosclerosis, and available tests for evaluation of thrombin functional activity. Major clinical studies are discussed that evaluated the efficacy of thrombin inhibitors and protease-activated receptor antagonists.

About the Authors

O. A. Dukhin
A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
Russian Federation

postgraduate student, cardiologist, cardioreanimation unit 

Moscow



A. I. Kalinsaya
A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
Russian Federation

MD, PhD

Moscow



A. V. Shpektor
A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Russian Federation

MD, Professor, Corresponding Member of Russian academy of sciences. Head of University Cardiology Hospital

Moscow



E. Yu. Vasilieva
A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
Russian Federation

MD, Professor, Head of Laboratory of Atherothrombosis, Cardiology Department

Moscow



References

1. Moravitz P. Beiträge zur kenntnis der blutgerinnung. Dtsch Arch Klin Med 1904;79:1–28.

2. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science (80- ) 1964;145:1310–2. https://doi.org/10.1126/science.145.3638.1310.

3. Macfarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier [23]. Nature 1964;202:498–9. https://doi.org/10.1038/202498a0.

4. Schastlivtsev I.V., Lobastov K.V., Tsaplin S.N., Mkrtychev D.S. Modern view on hemostasis system: cell theory. Meditsinskiy sovet = Medical Council. 2019;(16):72-77. (In Russ.) https://doi.org/10.21518/2079-701X-2019-16-72-77

5. Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost 2001;85:958–65. https://doi.org/10.1055/s-0037-1615947.

6. Levi M, Keller TT, van Gorp E, ten Cate H. Infection and inflammation and the coagulation system. Cardiovasc Res 2003;60:26–39. https://doi.org/10.1016/S0008-6363(02)00857-X.

7. Margetic S. Inflammation and haemostasis. Biochem Medica 2012;22:49.

8. Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2016;118:1392–408. https://doi.org/10.1161/CIRCRESAHA.116.306853.

9. Ross R. Inflammation or Atherogenesis. N Engl J Med 1999;340:115–26. https://doi.org/10.1056/NEJM199901143400207.

10. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012;32:2045–51. https://doi.org/10.1161/ATVBAHA.108.179705.

11. Ross R, Faggiotto A, Bowen-Pope D, Raines E. The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circulation 1984;70:III77-82.

12. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Prim 2019;5. https://doi.org/10.1038/s41572-019-0106-z.

13. Petzold T, Massberg S. Thrombin: A Gas Pedal Driving Innate Immunity. Immunity 2019;50:1024–6. https://doi.org/10.1016/j.immuni.2019.03.006.

14. Burzynski LC, Humphry M, Pyrillou K, Wiggins KA, Chan JNE, Figg N, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity 2019;50:1033-1042.e6. https://doi.org/10.1016/j.immuni.2019.03.003.

15. Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity – a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2018;180:782–98. https://doi.org/10.1111/bjh.15062.

16. Davie EW, Kulman JD. An overview of the structure and function of thrombin. Semin Thromb Hemost 2006;32:3–15. https://doi.org/10.1055/s-2006-939550.

17. Strukova SM. Thrombin as a Regulator of Inflammation and Reparative Processes in Tissues. Biochem 2001;66:8–18. https://doi.org/10.1023/A:1002869310180.

18. Ebrahimi S, Jaberi N, Avan A, Ryzhikov M, Keramati MR, Parizadeh MR, et al. Role of thrombin in the pathogenesis of central nervous system inflammatory diseases. J Cell Physiol 2017;232:482–5. https://doi.org/10.1002/jcp.25501.

19. Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer’s Disease. Front Neurosci 2020;14. https://doi.org/10.3389/fnins.2020.00762.

20. Shavit-Stein E, Aronovich R, Sylantiev C, Gofrit SG, Chapman J, Dori A. The role of thrombin in the pathogenesis of diabetic neuropathy. PLoS One 2019;14:e0219453. https://doi.org/10.1371/journal.pone.0219453.

21. Jaberi N, Soleimani A, Pashirzad M, Abdeahad H, Mohammadi F, Khoshakhlagh M, et al. Role of thrombin in the pathogenesis of atherosclerosis. J Cell Biochem 2019;120:4757–65. https://doi.org/10.1002/jcb.27771.

22. Baykal D, Schmedtje JF, Runge MS. Role of the thrombin receptor in restenosis and atherosclerosis. Am J Cardiol 1995;75:82B-87B. https://doi.org/10.1016/0002-9149(95)80019-O.

23. Winter WE, Greene DN, Beal SG, Isom JA, Manning H, Wilkerson G, et al. Clotting factors: Clinical biochemistry and their roles as plasma enzymes. Adv. Clin. Chem., vol. 94, Academic Press Inc.; 2020, p. 31–84. https://doi.org/10.1016/bs.acc.2019.07.008.

24. Lane DA, Philippou H, Huntington JA. Directing thrombin. Blood 2005;106:2605–12. https://doi.org/10.1182/blood-2005-04-1710.

25. Griffin JH, Zlokovic B V., Mosnier LO. Activated protein C: Biased for translation. Blood 2015;125:2898–907. https://doi.org/10.1182/blood-2015-02-355974.

26. Borissoff JI, Spronk HMH, Heeneman S, Ten Cate H. Is thrombin a key player in the “coagulation-atherogenesis” maze? Cardiovasc Res 2009;82:392–403. https://doi.org/10.1093/cvr/cvp066.

27. D’Atri LP, Schattner M. Platelet toll-like receptors in thromboinflammation. Front Biosci - Landmark 2017;22:1867–83. https://doi.org/10.2741/4576.

28. De Candia E. Mechanisms of platelet activation by thrombin: A short history. Thromb Res 2012;129:250–6. https://doi.org/10.1016/j.thromres.2011.11.001.

29. Wu J, Heemskerk JWM, Baaten CCFMJ. Platelet Membrane Receptor Proteolysis: Implications for Platelet Function. Front Cardiovasc Med 2021;7:608391. https://doi.org/10.3389/fcvm.2020.608391.

30. Kretz CA, Tomberg K, Van Esbroeck A, Yee A, Ginsburg D. High throughput protease profiling comprehensively defines active site specificity for thrombin and ADAMTS13. Sci Rep 2018;8:1–13. https://doi.org/10.1038/s41598-018-21021-9.

31. Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): Mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019;17. https://doi.org/10.1186/s12959-019-0194-8.

32. Posma JJ, Grover SP, Hisada Y, Owens AP, Antoniak S, Spronk HM, et al. Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases. Arterioscler Thromb Vasc Biol 2019;39:13–24. https://doi.org/10.1161/ATVBAHA.118.311655.

33. Slofstra SH, Bijlsma MF, Groot AP, Reitsma PH, Lindhout T, Ten Cate H, et al. Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood 2007;110:3176–82. https://doi.org/10.1182/blood-2007-02-075440.

34. Martorell L, Martínez-González J, Rodríguez C, Gentile M, Calvayrac O, Badimon L. Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 2008;99:305–15. https://doi.org/10.1160/TH07-08-0481.

35. Posma JJN, Posthuma JJ, Spronk HMH. Coagulation and non-coagulation effects of thrombin. J Thromb Haemost 2016;14:1908–16. https://doi.org/10.1111/jth.13441.

36. Kaplan ZS, Zarpellon A, Alwis I, Yuan Y, McFadyen J, Ghasemzadeh M, et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015;6:1–13. https://doi.org/10.1038/ncomms8835.

37. Vergnolle N, Derian CK, D’Andrea MR, Steinhoff M, Andrade-Gordon P. Characterization of Thrombin-Induced Leukocyte Rolling and Adherence: A Potential Proinflammatory Role for Proteinase-Activated Receptor-4. J Immunol 2002;169:1467–73. https://doi.org/10.4049/jimmunol.169.3.1467.

38. Chung SW, Park JW, Lee SA, Eo SK, Kim K. Thrombin promotes proinflammatory phenotype in human vascular smooth muscle cell. Biochem Biophys Res Commun 2010;396:748–54. https://doi.org/10.1016/j.bbrc.2010.05.009.

39. Fang X, Liao R, Yu Y, Li J, Guo Z, Zhu T. Thrombin Induces Secretion of Multiple Cytokines and Expression of Protease-Activated Receptors in Mouse Mast Cell Line. Mediators Inflamm 2019;2019. https://doi.org/10.1155/2019/4952131.

40. Kranzhöfer R, Clinton SK, Ishii K, Coughlin SR, Fenton JW, Libby P. Thrombin potently stimulates cytokine production in human vascular smooth muscle cells but not in mononuclear phagocytes. Circ Res 1996;79:286–94. https://doi.org/10.1161/01.RES.79.2.286.

41. Sugama Y, Tiruppathi C, Janakidevi K, Andersen TT, Fenton JW, Malik AB. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: A mechanism for stabilizing neutrophil adhesion. J Cell Biol 1992;119:935–44. https://doi.org/10.1083/jcb.119.4.935.

42. Kaplanski G, Marin V, Fabrigoule M, Boulay V, Benoliel AM, Bongrand P, et al. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 1998;92:1259–67. https://doi.org/10.1182/blood.v92.4.1259.

43. Tull SP, Bevins A, Kuravi SJ, Satchell SC, Al-Ani B, Young SP, et al. PR3 and Elastase Alter PAR1 Signaling and Trigger vWF Release via a Calcium-Independent Mechanism from Glomerular Endothelial Cells. PLoS One 2012;7:43916. https://doi.org/10.1371/journal.pone.0043916.

44. Miszta A, Pelkmans L, Lindhout T, Krishnamoorthy G, De Groot PG, Hemker CH, et al. Thrombin-dependent Incorporation of von Willebrand factor into a Fibrin network. J Biol Chem 2014;289:35979–86. https://doi.org/10.1074/jbc.M114.591677.

45. Maruyama I, Shigeta K, Miyahara H, Nakajima T, Shin H, Ide S, et al. Thrombin activates NF-κB through thrombin receptor and results in proliferation of vascular smooth muscle cells: Role of thrombin in atherosclerosis and restenosis. Ann. N. Y. Acad. Sci., vol. 811, Blackwell Publishing Inc.; 1997, p. 429–36. https://doi.org/10.1111/j.1749-6632.1997.tb52024.x.

46. Smiljanic K, Obradovic M, Jovanovic A, Djordjevic J, Dobutovic B, Jevremovic D, et al. Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: Involvement of MMP-2. Mol Cell Biochem 2014;396:147–60. https://doi.org/10.1007/s11010-014-2151-y.

47. Janjanam J, Zhang B, Mani AM, Singh NK, Traylor JG, Orr AW, et al. LIM and cysteine-rich domains 1 is required for thrombininduced smooth muscle cell proliferation and promotes atherogenesis. J Biol Chem 2018;293:3088–103. https://doi.org/10.1074/jbc.RA117.000866.

48. Haralabopoulos GC, Grant DS, Kleinman HK, Maragoudakis ME. Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am J Physiol - Cell Physiol 1997;273. https://doi.org/10.1152/ajpcell.1997.273.1.c239.

49. Wang Z, Castresana MR, Newman WH. Reactive oxygen species-sensitive p38 MAPK controls thrombin-induced migration of vascular smooth muscle cells. J Mol Cell Cardiol 2004;36:49–56. https://doi.org/10.1016/j.yjmcc.2003.09.014.

50. Palekar RU, Jallouk AP, Myerson JW, Pan H, Wickline SA. Inhibition of Thrombin with PPACK-Nanoparticles Restores Disrupted Endothelial Barriers and Attenuates Thrombotic Risk in Experimental Atherosclerosis. Arterioscler Thromb Vasc Biol 2016;36:446. https://doi.org/10.1161/ATVBAHA.115.306697.

51. Chen D, Li K, Festenstein S, Karegli J, Wilkinson H, Leonard H, et al. Regression of Atherosclerosis in ApoE−/− Mice Via Modulation of Monocyte Recruitment and Phenotype, Induced by Weekly Dosing of a Novel “Cytotopic” Anti‐Thrombin Without Prolonged Anticoagulation. J Am Heart Assoc 2020;9. https://doi.org/10.1161/JAHA.119.014811.

52. Bea F, Kreuzer J, Preusch M, Schaab S, Isermann B, Rosenfeld ME, et al. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E- deficient mice. Arterioscler Thromb Vasc Biol 2006;26:2787–92. https://doi.org/10.1161/01.ATV.0000246797.05781.ad.

53. Hemker HC, Giesen P, Al Dieri R, Regnault V, De Smedt E, Wagenvoord R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003;33:4–15. https://doi.org/10.1159/000071636.

54. Skeppholm M, Kallner A, Malmqvist K, Blombäck M, Wallén H. Is fibrin formation and thrombin generation increased during and after an acute coronary syndrome? Thromb Res 2011;128:483–9. https://doi.org/10.1016/J.THROMRES.2011.03.011.

55. Loeffen R, Van Oerle R, Leers MPG, Kragten JA, Crijns H, Spronk HMH, et al. Factor XIa and thrombin generation are elevated in patients with acute coronary syndrome and predict recurrent cardiovascular events. PLoS One 2016;11. https://doi.org/10.1371/journal.pone.0158355.

56. Smid M, Dielis AWJH, Spronk HMH, Rumley A, van Oerle R, Woodward M, et al. Thrombin Generation in the Glasgow Myocardial Infarction Study. PLoS One 2013;8. https://doi.org/10.1371/journal.pone.0066977.

57. Attanasio M, Marcucci R, Gori AM, Paniccia R, Valente S, Balzi D, et al. Residual thrombin potential predicts cardiovascular death in acute coronary syndrome patients undergoing percutaneous coronary intervention. Thromb Res 2016;147:52–7. https://doi.org/10.1016/j.thromres.2016.09.020.

58. Tosi F, Micaglio R, Sandri M, Castagna A, Minguzzi D, Stefanoni F, et al. Increased plasma thrombin potential is associated with stable coronary artery disease: An angiographically-controlled study. Thromb Res 2017;155:16–22. https://doi.org/10.1016/j.thromres.2017.04.021.

59. Schneider JG, Isermann B, Kleber ME, Wang H, Boehm BO, Grammer TB, et al. Inverse association of the endogenous thrombin potential (ETP) with cardiovascular death: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Int J Cardiol 2014;176:139–44. https://doi.org/10.1016/J.IJCARD.2014.07.026.

60. Filkova AA, Panteleev M, Sveshnikova AN. Reversible platelet aggregation in the presence of calcium ions: Mechanisms and potential value. Pediatr Hematol Immunopathol 2019;18:120–9. https://doi.org/10.24287/1726-1708-2019-18-3-120-129.

61. Kuliczkowski W, Greif M, Ga̧sior M, Kaczmarski J, Pres D, Poloński L. Effects of platelet and inflammatory system activation on outcomes in diabetic patients with ST segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Kardiol Pol 2011;69:531–7.

62. Małek ŁA, Kłopotowski M, Śpiewak M, Woźniak K, Waś J, Miśko J, et al. Platelet reactivity and intramyocardial hemorrhage in patients with ST-segment elevation myocardial infarction. Clin Appl Thromb 2014;20:553–8. https://doi.org/10.1177/1076029612474715.

63. Franchi F, Rollini F, Faz G, Rivas JR, Rivas A, Agarwal M, et al. Pharmacodynamic effects of vorapaxar in prior myocardial infarction patients treated with potent oral p2y12 receptor inhibitors with and without aspirin: Results of the vora-pratic study. J Am Heart Assoc 2020;9. https://doi.org/10.1161/JAHA.120.015865.

64. Valente-Acosta B, Baños-González MA, Peña-Duque MA, Martínez-Ríos MA, Quintanar-Trejo L, Aptilon-Duque G, et al. Association between Stable Coronary Artery Disease and In Vivo Thrombin Generation. Cardiol Res Pract 2016;2016. https://doi.org/10.1155/2016/5149825.

65. Li YH, Teng JK, Tsai WC, Tsai LM, Lin LJ, Guo HR, et al. Prognostic significance of elevated hemostatic markers in patients with acute myocardial infarction. J Am Coll Cardiol 1999;33:1543–8. https://doi.org/10.1016/S0735-1097(99)00081-9.

66. Silvain J, O’Connor SA, Yan Y, Kerneis M, Hauguel-Moreau M, Zeitouni M, et al. Biomarkers of Thrombosis in ST-Segment Elevation Myocardial Infarction: A Substudy of the ATOLL Trial Comparing Enoxaparin Versus Unfractionated Heparin. Am J Cardiovasc Drugs 2018;18:503–11. https://doi.org/10.1007/s40256-018-0294-z.

67. Gibson WJ, Gibson CM, Yee MK, Korjian S, Daaboul Y, Plotnikov AN, et al. Safety and Efficacy of Rivaroxaban When Added to Aspirin Monotherapy Among Stabilized Post-Acute Coronary Syndrome Patients: A Pooled Analysis Study of ATLAS ACS-TIMI 46 and ATLAS ACS 2-TIMI 51. J Am Heart Assoc 2019;8. https://doi.org/10.1161/JAHA.118.009451.

68. Hansen CH, Ritschel V, Halvorsen S, Andersen GO, Bjørnerheim R, Eritsland J, et al. Markers of thrombin generation are associated with myocardial necrosis and left ventricular impairment in patients with ST-elevation myocardial infarction. Thromb J 2015;13:1–8. https://doi.org/10.1186/s12959-015-0061-1.

69. van der Putten RFM, Glatz JFC, Hermens WT. Plasma markers of activated hemostasis in the early diagnosis of acute coronary syndromes. Clin Chim Acta 2006;371:37–54. https://doi.org/10.1016/j.cca.2006.03.005.

70. Giannitsis E, Siemens HJ, Mitusch R, Tettenborn I, Wiegand U, Schmücker G, et al. Prothrombin fragments F1+2, thrombin-antithrombin III complexes, fibrin monomers and fibrinogen in patients with coronary atherosclerosis. Int J Cardiol 1999;68:269–74. https://doi.org/10.1016/S0167-5273(98)00256-3.

71. Lassila R, Peltonen S, Lepantalo M, Saarinen O, Kauhanen P, Manninen V. Severity of Peripheral Atherosclerosis Is Associated With Fibrinogen and Degradation of Cross-linked Fibrin n.d.

72. Gulba DC, Barthels M, Westhoff-Bleck M, Jost S, Rafflenbeul W, Daniel WG, et al. Increased thrombin levels during thrombolytic therapy in acute myocardial infarction. Relevance for the success of therapy. Circulation 1991;83:937–44. https://doi.org/10.1161/01.CIR.83.3.937.

73. Borissoff JI, Joosen IA, Versteylen MO, Spronk HM, Ten Cate H, Hofstra L. Accelerated In Vivo Thrombin Formation Independently Predicts the Presence and Severity of CT Angiographic Coronary Atherosclerosis. JACC Cardiovasc Imaging 2012;5:1201–10. https://doi.org/10.1016/J.JCMG.2012.01.023.

74. Pinet C, Le Grand B, John GW, Coulombe A. Thrombin facilitation of voltage-gated sodium channel activation in human cardiomyocytes: Implications for ischemic sodium loading. Circulation 2002;106:2098–103. https://doi.org/10.1161/01.CIR.0000034510.64828.96.

75. McHowat J, Creer MH. Thrombin activates a membrane-associated calcium-independent PLA2 in ventricular myocytes. Am J Physiol - Cell Physiol 1998;274. https://doi.org/10.1152/ajpcell.1998.274.2.c447.

76. Jacobsen AN, Du XJ, Lambert KA, Dart AM, Woodcock EA. Arrhythmogenic action of thrombin during myocardial reperfusion via release of inositol 1,4,5-triphosphate. Circulation 1996;93:23–6. https://doi.org/10.1161/01.CIR.93.1.23.

77. Elmas E, Kaelsch T, Wolpert C, Sueselbeck T, Bertsch T, Dempfle CE, et al. Assessment of markers of thrombin generation in patients with acute myocardial infarction complicated by ventricular fibrillation. Clin Cardiol 2006;29:165. https://doi.org/10.1002/CLC.4960290408.

78. Balandina AN, Serebriyskiy II, Poletaev A V., Polokhov DM, Gracheva MA, Koltsova EM, et al. Thrombodynamics—A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One 2018;13:e0199900. https://doi.org/10.1371/journal.pone.0199900.

79. Koltsova EM, Kuprash AD, Dashkevich NM, Vardanyan DM, Chernyakov A V., Kumskova MA, et al. Determination of fibrin clot growth and spatial thrombin propagation in the presence of different types of phospholipid surfaces. Platelets 2020. https://doi.org/10.1080/09537104.2020.1823360.

80. Lee CJ, Ansell JE. Direct thrombin inhibitors. Br J Clin Pharmacol 2011;72:581. https://doi.org/10.1111/J.1365-2125.2011.03916.X.

81. Ahmad Hamdi AH, Dali AF, Mat Nuri TH, Saleh MS, Ajmi NN, Neoh CF, et al. Safety and Effectiveness of Bivalirudin in Patients Undergoing Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Front Pharmacol 2017;8:410. https://doi.org/10.3389/fphar.2017.00410.

82. Valgimigli M, Frigoli E, Leonardi S, Vranckx P, Rothenbühler M, Tebaldi M, et al. Radial versus femoral access and bivalirudin versus unfractionated heparin in invasively managed patients with acute coronary syndrome (MATRIX): final 1-year results of a multicentre, randomised controlled trial. Lancet 2018;392:835–48. https://doi.org/10.1016/S0140-6736(18)31714-8.

83. Kastrati A, Neumann F-J, Mehilli J, Byrne RA, Iijima R, Büttner HJ, et al. Bivalirudin versus Unfractionated Heparin during Percutaneous Coronary Intervention. N Engl J Med 2008;359:688–96. https://doi.org/10.1056/nejmoa0802944.

84. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2018;39:119–77. https://doi.org/10.1093/eurheartj/ehx393.

85. Burstein B, Wieruszewski PM, Zhao Y-J, Smischney N. Anticoagulation with direct thrombin inhibitors during extracorporeal membrane oxygenation. World J Crit Care Med 2019;8:87–98. https://doi.org/10.5492/wjccm.v8.i6.87.

86. Voskoboinik A, Butcher E, Sandhu A, Nguyen DT, Tzou W, Della Rocca DG, et al. Direct Thrombin Inhibitors as an Alternative to Heparin During Catheter Ablation: A Multicenter Experience. JACC Clin Electrophysiol 2020;6:484–90. https://doi.org/10.1016/j.jacep.2019.12.003.

87. Abel EE, Kane-Gill SL, Seybert AL, Kellum JA. Direct thrombin inhibitors for management of heparin-induced thrombocytopenia in patients receiving renal replacement therapy: Comparison of clinical outcomes. Am J Heal Pharm 2012;69:1559–67. https://doi.org/10.2146/ajhp110540.

88. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med 2009;361:1139–51. https://doi.org/10.1056/nejmoa0905561.

89. Hindricks G, Potpara T, Dagres N, Bax JJ, Boriani G, Dan GA, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2021;42:373–498. https://doi.org/10.1093/eurheartj/ehaa612.

90. Konstantinides S V, Meyer G, Becattini C, Bueno H, Geersing G-J, Harjola V-P, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS)The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 2020;41:543–603. https://doi.org/10.1093/EURHEARTJ/EHZ405.

91. Mazzolai L, Aboyans V, Ageno W, Agnelli G, Alatri A, Bauersachs R, et al. Diagnosis and management of acute deep vein thrombosis: a joint consensus document from the European Society of Cardiology working groups of aorta and peripheral vascular diseases and pulmonary circulation and right ventricular function. Eur Heart J 2018;39:4208–18. https://doi.org/10.1093/EURHEARTJ/EHX003.

92. Olsson SB. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): Randomised controlled trial. Lancet 2003;362:1691–8. https://doi.org/10.1016/S0140-6736(03)14841-6.

93. Halperin JL. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: A randomized trial. J Am Med Assoc 2005;293:690–8. https://doi.org/10.1001/jama.293.6.690.

94. Andersson TB, Keisu M. Drug-induced liver injury in humans: The case of ximelagatran. Handb Exp Pharmacol 2010;196:407–18. https://doi.org/10.1007/978-3-642-00663-0_13.

95. Lee WM, Larrey D, Olsson R, Lewis JH, Keisu M, Auclert L, et al. Hepatic findings in long-term clinical trials of ximelagatran. Drug Saf 2005;28:351–70. https://doi.org/10.2165/00002018-200528040-00006.

96. Geli J, Capoccia M, Maybauer DM, Maybauer MO. Argatroban Anticoagulation for Adult Extracorporeal Membrane Oxygenation: A Systematic Review. J Intensive Care Med 2021. https://doi.org/10.1177/0885066621993739.

97. Koster A, Faraoni D, Levy JH. Argatroban and Bivalirudin for Perioperative Anticoagulation in Cardiac Surgery. Anesthesiology 2018;128:390–400. https://doi.org/10.1097/ALN.0000000000001976.

98. Colarossi G, Maffulli N, Trivellas A, Schnöring H, Hatam N, Tingart M, et al. Superior outcomes with Argatroban for heparin-induced thrombocytopenia: a Bayesian network meta-analysis. Int J Clin Pharm 2021;43:825–38. https://doi.org/10.1007/s11096-021-01260-z.

99. Becker RC, Moliterno DJ, Jennings LK, Pieper KS, Pei J, Niederman A, et al. Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 2009;373:919–28. https://doi.org/10.1016/S0140-6736(09)60230-0.

100. Goto S, Yamaguchi T, Ikeda Y, Kato K, Yamaguchi H, Jensen P. Safety and exploratory efficacy of the novel thrombin receptor (PAR-1) antagonist SCH530348 for non-ST-segment elevation acute coronary syndrome. J Atheroscler Thromb 2010;17:156–64. https://doi.org/10.5551/jat.3038.

101. Tricoci P, Huang Z, Held C, Moliterno DJ, Armstrong PW, Van de Werf F, et al. Thrombin-Receptor Antagonist Vorapaxar in Acute Coronary Syndromes. N Engl J Med 2012;366:20–33. https://doi.org/10.1056/nejmoa1109719.

102. Morrow DA, Braunwald E, Bonaca MP, Ameriso SF, Dalby AJ, Fish MP, et al. Vorapaxar in the Secondary Prevention of Atherothrombotic Events. N Engl J Med 2012;366:1404–13. https://doi.org/10.1056/nejmoa1200933.

103. Tantry US, Bliden KP, Chaudhary R, Novakovic M, Rout A, Gurbel PA. Vorapaxar in the treatment of cardiovascular diseases. Future Cardiol 2020;16:373–84. https://doi.org/10.2217/fca-2019-0090.

104. Gryka RJ, Buckley LF, Anderson SM. Vorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease. Drugs R D 2017;17:65–72. https://doi.org/10.1007/s40268-016-0158-4.

105. Moon JY, Franchi F, Rollini F, Angiolillo DJ. Role for Thrombin Receptor Antagonism With Vorapaxar in Secondary Prevention of Atherothrombotic Events: From Bench to Bedside. J Cardiovasc Pharmacol Ther 2018;23:23–37. https://doi.org/10.1177/1074248417708617.

106. Magnani G, Bonaca MP, Braunwald E, Dalby AJ, Fox KAA, Murphy SA, et al. Efficacy and safety of vorapaxar as approved for clinical use in the United States. J Am Heart Assoc 2015;4:e001505. https://doi.org/10.1161/JAHA.114.001505.

107. Frampton JE. Vorapaxar: A review of its use in the long-term secondary prevention of atherothrombotic events. Drugs 2015;75:797–808. https://doi.org/10.1007/s40265-015-0387-9.

108. O’Donoghue ML, Bhatt DL, Wiviott SD, Goodman SG, Fitzgerald DJ, Angiolillo DJ, et al. Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes: The lessons from antagonizing the cellular effects of thrombin-acute coronary syndromes trial. Circulation 2011;123:1843–53. https://doi.org/10.1161/CIRCULATIONAHA.110.000786.

109. Wiviott SD, Flather MD, O’Donoghue ML, Goto S, Fitzgerald DJ, Cura F, et al. Randomized trial of atopaxar in the treatment of patients with coronary artery disease: The lessons from antagonizing the cellular effect of thrombin-coronary artery disease trial. Circulation 2011;123:1854–63. https://doi.org/10.1161/CIRCULATIONAHA.110.001404.


Review

For citations:


Dukhin O.A., Kalinsaya A.I., Shpektor A.V., Vasilieva E.Yu. The role of thrombin in the pathogenesis of atherosclerosis and its complications. Kardiologiia. 2022;62(3):73-81. (In Russ.) https://doi.org/10.18087/cardio.2022.3.n1968

Views: 1233


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)