Anthracycline-Induced Cardiotoxicity: the Role of Genetic Predictors
https://doi.org/10.18087/cardio.2023.4.n1946
Abstract
Aim To evaluate the predictive significance of gene polymorphism in endothelin-1 type 2A receptor, NADPH oxidase, p53 protein, endothelial nitric oxide synthase, caspase 8, interleukin-1β, tumor necrosis factor-α, superoxide dismutase-2, glutathione peroxidase-1, β1-adrenoceptor, angiotensin-converting enzyme, and matrix metalloproteinase-3 (MMP-3) genes in evaluating the risk of anthracycline-induced cardiotoxicity (AIC) in women without concurrent cardiovascular diseases (CVD).
Material and methods This study included 176 women aged 45.0 [42.0; 50.0] years with breast cancer without concurrent CVD who were scheduled for polychemotherapy (PCT) with anthracycline antibiotics. Echocardiography was performed for all patients at baseline and at 12 months after the end of PCT course. Genetic polymorphism was determined with the polymerase chain reaction.
Results At 12 months, all patients were in remission of the underlying disease. They were retrospectively included into 2 groups: 1st group, 52 patients with AIC and 2nd group, 124 women without AIC symptoms. The development of AIC was associated with the presence of the p53 protein gene Arg / Arg genotype (odds ratio (OR), 2.972; p=0.001), NOS3 gene T / T genotype (OR, 3.059; p=0.018), NADPH oxidase gene T / T genotype (OR, 2.753; p=0.008), GPX1 gene C / C genotype (OR, 2.345; p=0.007), MMP-3 gene 5A / 5A genotype (OR, 2.753; p=0.008), and ADRB1 gene G / G genotype (OR, 3.271; p=0.043).
Conclusion Evaluation of genetic polymorphism in p53 protein (rs1042522), NOS3 (rs1799983), NADPH-oxidase (rs4673), GPX1 (rs1050450), ADRB1 (Arg389Gly, rs1801253), and MMP-3 (rs3025058) genes can be recommended for use prior to starting chemotherapy in women with breast cancer without CVD for assessing the risk of AIC. A maximum risk of cardiotoxicity is associated with the presence of the p53 protein gene Arg / Arg genotype and NOS3 gene T / T genotype.
Keywords
About the Authors
K. V. KopevaRussian Federation
Can. med. Sci., Researcher, Department of Myocardial Pathology
Tomsk
Competing Interests:
No conflict of interest is reported.
E. V. Grakova
Russian Federation
Dr. med. Sci., Leading Researcher, Department of Myocardial Pathology
Tomsk
Competing Interests:
No conflict of interest is reported.
S. N. Shilov
Russian Federation
Dr. med. Sci., Assistant Professor, Pathological Physiology and clinical Pathophysiology Department
Novosibirsk
Competing Interests:
No conflict of interest is reported.
A. A. Popova
Russian Federation
Dr. med. Sci., Assistant Professor, Pathological Physiology and clinical Pathophysiology Department
Novosibirsk
Competing Interests:
No conflict of interest is reported.
E. N. Berezikova
Russian Federation
Dr. med. Sci., Assistant Professor, Policlinic Therapy and General Medical Practice Department
Novosibirsk
Competing Interests:
No conflict of interest is reported.
M. N. Neupokoeva
Russian Federation
Dr. med. Sci., Assistant Professor, Policlinic Therapy and General Medical Practice Department
Novosibirsk
Competing Interests:
No conflict of interest is reported.
E. T. Ratushnyak
Russian Federation
Sports medicine doctor, State Novosibirsk regional medical and physical education dispensary
Novosibirsk
Competing Interests:
No conflict of interest is reported.
A. T. Teplyakov
Russian Federation
Dr. med. Sci., Professor
Tomsk
Competing Interests:
No conflict of interest is reported.
References
1. Adhikari A, Asdaq SMB, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR et al. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals. 2021;14(10):970. DOI: 10.3390/ph14100970
2. Mitry MA, Edwards JG. Doxorubicin induced heart failure: Pheno type and molecular mechanisms. IJC Heart & Vasculature. 2016;10:17–24. DOI: 10.1016/j.ijcha.2015.11.004
3. Fabiani I, Aimo A, Grigoratos C, Castiglione V, Gentile F, Saccaro LF et al. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Failure Reviews. 2021;26(4):881–90. DOI: 10.1007/s10741-020-10063-9
4. Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology (London, England). 2019;5:18. DOI: 10.1186/s40959-019-0054-5
5. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters. 2019;307:41–8. DOI: 10.1016/j.toxlet.2019.02.013
6. Aminkeng F, Ross CJD, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP et al. Recommendations for genetic testing to reduce the incidence of anthracycline‐induced cardiotoxicity. British Journal of Clinical Pharmacology. 2016;82(3):683–95. DOI: 10.1111/bcp.13008
7. Sonicheva N.A., Zateyshchikov D.A. Cardiology: genetics’ time. Consilium Medicum. 2020;22(5):35–9. DOI: 10.26442/20751753.2020.5.200185
8. Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Molecular Pharmacology. 2019;96(2):219–32. DOI: 10.1124/mol.119.115725
9. Osataphan N, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin‐induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. Journal of Cellular and Molecular Medicine. 2020;24(12):6534–57. DOI: 10.1111/jcmm.15305
10. Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5(9):e132747. DOI: 10.1172/jci.insight.132747
11. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E et al. Activation of the MET receptor attenuates doxorubicin‐induced cardiotoxicity in vivo and in vitro. British Journal of Pharmacology. 2020;177(13):3107–22. DOI: 10.1111/bph.15039
12. Grakova EV, Shilov SN, Kopeva KV, Berezikova EN, Popova AA, Neupokoeva MN et al. Anthracycline-Induced Cardiotoxicity: The Role of Endothelial Dysfunction. Cardiology. 2021;146(3):315–23. DOI: 10.1159/000512771
13. Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin‐induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytotherapy Research. 2021;35(3):1163–75. DOI: 10.1002/ptr.6882
14. McSweeney KM, Bozza WP, Alterovitz W-L, Zhang B. Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discovery. 2019;5(1):102. DOI: 10.1038/s41420-019-0182-6
15. Li L-L, Wei L, Zhang N, Wei W-Y, Hu C, Deng W et al. Levosimendan Protects against Doxorubicin-Induced Cardiotoxicity by Regulating the PTEN/Akt Pathway. BioMed Research International. 2020;2020:1–11. DOI: 10.1155/2020/8593617
16. Georgakopoulos P, Kyriakidis M, Perpinia A, Karavidas A, Zimeras S, Mamalis N et al. The Role of Metoprolol and Enalapril in the Prevention of Doxorubicin-induced Cardiotoxicity in Lymphoma Patients. Anticancer Research. 2019;39(10):5703–7. DOI: 10.21873/anticanres.13769
17. Boutagy NE, Feher A, Pfau D, Liu Z, Guerrera NM, Freeburg LA et al. Dual Angiotensin Receptor-Neprilysin Inhibition With Sacubitril/Valsartan Attenuates Systolic Dysfunction in Experimental Doxorubicin-Induced Cardiotoxicity. JACC: CardioOncology. 2020;2(5):774–87. DOI: 10.1016/j.jaccao.2020.09.007
18. Koulaouzidis G, Yung AE, Yung DE, Skonieczna-Żydecka K, Marlicz W, Koulaouzidis A et al. Conventional cardiac risk factors associated with trastuzumab-induced cardiotoxicity in breast cancer: Systematic review and meta-analysis. Current Problems in Cancer. 2021;45(5):100723. DOI: 10.1016/j.currproblcancer.2021.100723
19. Pecoraro M, Pinto A, Popolo A. Trastuzumab-induced cardiotoxicity and role of mitochondrial connexin43 in the adaptive response. Toxicology in Vitro. 2020;67:104926. DOI: 10.1016/j.tiv.2020.104926
20. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA: A Cancer Journal for Clinicians. 2016;66(4):309–25. DOI: 10.3322/caac.21341
21. Corremans R, Adão R, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Clinical and Experimental Pharmacology and Physiology. 2019;46(3):204–15. DOI: 10.1111/1440-1681.13036
22. Bhagat A, Kleinerman ES. Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Advances in Experimental Medicine and Biology. 2020;1257:181–92. DOI: 10.1007/978-3-030-43032-0_15
23. Skála M, Hanousková B, Skálová L, Matoušková P. MicroRNAs in the diagnosis and prevention of drug-induced cardiotoxicity. Archives of Toxicology. 2019;93(1):1–9. DOI: 10.1007/s00204-018-2356-z
24. Zhao GL, Li QJ, Lu HY. Association between NOS3 genetic variants and coronary artery disease in the Han population. Genetics and Molecular Research. 2016;15(2):gmr8044. DOI: 10.4238/gmr.15028044
25. Krajinovic M, Elbared J, Drouin S, Bertout L, Rezgui A, Ansari M et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. The Pharmacogenomics Journal. 2016;16(6):530–5. DOI: 10.1038/tpj.2015.63
26. Cascales A, Pastor-Quirante F, Sánchez-Vega B, Luengo-Gil G, Corral J, Ortuño-Pacheco G et al. Association of Anthracycline-Related Cardiac Histological Lesions With NADPH Oxidase Functional Polymorphisms. The Oncologist. 2013;18(4):446–53. DOI: 10.1634/the-oncologist.2012-0239
27. Zheikova TV, Golubenko MV, Buikin SV, Botkina OYu, Makeeva OA, Lezhnev AA et al. Glutathione peroxidase 1 (GPX1) single nucleotide polymorphism Pro198→Leu: Association with life span and coronary artery disease. Molecular Biology. 2012;46(3):433–7. DOI: 10.1134/S0026893312030144
28. Grakova EV, Shilov SN, Kopeva KV, Berezikova EN, Popova AA, Neupokoeva MN et al. Extracellular matrix remodeling in anthracy-cline-induced cardiotoxicity: What place on the pedestal? International Journal of Cardiology. 2022;350:55–61. DOI: 10.1016/j.ij-card.2022.01.013
29. Guerra LA, Lteif C, Arwood MJ, McDonough CW, Dumeny L, Desai AA et al. Genetic polymorphisms in ADRB2 and ADRB1 are associated with differential survival in heart failure patients taking β-blockers. The Pharmacogenomics Journal. 2022;22(1):62–8. DOI: 10.1038/s41397-021-00257-1
30. Pacanowski MA, Zineh I, Li H, Johnson BD, Cooper-DeHoff RM, Bittner V et al. Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. Journal of Translational Medicine. 2008;6(1):11. DOI: 10.1186/1479-5876-6-11
31. Luzum JA, English JD, Ahmad US, Sun JW, Canan BD, Sadee W et al. Association of Genetic Polymorphisms in the Beta-1 Adrenergic Receptor with Recovery of Left Ventricular Ejection Fraction in Patients with Heart Failure. Journal of Cardiovascular Translational Research. 2019;12(4):280–9. DOI: 10.1007/s12265-019-09866-5
Review
For citations:
Kopeva K.V., Grakova E.V., Shilov S.N., Popova A.A., Berezikova E.N., Neupokoeva M.N., Ratushnyak E.T., Teplyakov A.T. Anthracycline-Induced Cardiotoxicity: the Role of Genetic Predictors. Kardiologiia. 2023;63(4):22-28. https://doi.org/10.18087/cardio.2023.4.n1946