ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

State of the art mathematical methods of the coronary blood flow modelling: background and clinical value

https://doi.org/10.18087/cardio.2023.3.n1930

Abstract

X-ray computed tomography coronary angiography (CTCA) is a current method for diagnosing ischemic heart disease. Although this method has a high specificity and a negative predictive value in diagnosing coronary obstructions, there are limitations in determining the hemodynamic significance of the stenosis. Extensive use of noninvasive methods for evaluation of coronary hemodynamics, specifically evaluation of the fractional flow reserve (FFR) is limited due to its high cost and risks of complications. Mathematical modeling of coronary circulation and its reserve based on CTCA data is an up-to-date method that has been experimentally confirmed and clinically validated. This method showed a high diagnostic efficacy in several large studies that used the invasive determination of FFR as a “gold standard”. This review addresses the current state of studies on mathematical modeling for fractional coronary reserve in patients with ischemic heart disease, as well as the limitations and prospects of this method.

About the Authors

A. T. Suyundukova
National Research Tomsk State University
Russian Federation

graduate student of the Department General and Experimental Physics, Faculty of Physics, National Research Tomsk State University

Tomsk, Russia

 



V. P. Demkin
National Research Tomsk State University
Russian Federation

Doctor of Physical and Mathematical Sciences, Professor; Head of the Department of General and Experimental Physics of the Faculty of Physics, National Research Tomsk State University

Tomsk, Russia



A. V. Mochula
Research Institute of Cardiology, Toms National Research Medical Center
Russian Federation

PhD, MD, senior researcher of  Department of Nuclear Medicine, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russia



M. O. Gulya
Research Institute of Cardiology, Toms National Research Medical Center
Russian Federation

PhD, MD, radiologist  of  Department of Nuclear Medicine,  Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russia



A. N. Maltseva
Research Institute of Cardiology, Toms National Research Medical Center
Russian Federation

post-graduate student of  Department of Nuclear Medicine,  Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russia



K. V. Zavadovsky
Research Institute of Cardiology, Toms National Research Medical Center
Russian Federation

PhD, MD, Head of  Department of Nuclear Medicine, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russia

 



References

1. Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. European Heart Journal. 2020;41(1):12–85. DOI: 10.1093/eurheartj/ehz859

2. Schelbert HR. Anatomy and physiology of coronary blood flow. Journal of Nuclear Cardiology. 2010;17(4):545–54. DOI: 10.1007/s12350-010-9255-x

3. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, FunckBrentano C et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 2020;41(3):407–77. DOI: 10.1093/eurheartj/ehz425

4. Barbarash O.L., Karpov Yu.A., Kashtalap V.V., Boshchenko A.A., Ruda M.Ya., Akchurin R.S. et al. 2020 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2020;25(11):201–50. DOI: 10.15829/1560-4071-2020-4076

5. Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal. 2019;40(2):87–165. DOI: 10.1093/eurheartj/ehy394

6. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van`t Veer M et al. Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention. New England Journal of Medicine. 2009;360(3):213–24. DOI: 10.1056/NEJMoa0807611

7. Taylor CA, Fonte TA, Min JK. Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve: scientific basis. Journal of the American College of Cardiology. 2013;61(22):2233–41. DOI: 10.1016/j.jacc.2012.11.083

8. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal. 2014;35(37):2541–619. DOI: 10.1093/eurheartj/ehu278

9. Heymann MA, Payne BD, Hoffman JIE, Rudolph AM. Blood flow measurements with radionuclide-labeled particles. Progress in Cardiovascular Diseases. 1977;20(1):55–79. DOI: 10.1016/S0033-0620(77)80005-4

10. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87(4):1354–67. DOI: 10.1161/01.CIR.87.4.1354

11. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994;89(3):1013–22. DOI: 10.1161/01.CIR.89.3.1013

12. Pijls NHJ, de Bruyne B, Peels K, van der Voort PH, Bonnier HJRM, Bartunek J et al. Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses. New England Journal of Medicine. 1996;334(26):1703–8. DOI: 10.1056/NEJM199606273342604

13. Ferziger JH, Perić M. Computational methods for fluid dynamics. – Berlin Heidelberg: Springer;1997. - 364 p. ISBN 978-3-540-59434-5

14. Caro C, Pedley TJ, Schroter RC, Seed WA. The mechanics of the circulation. -Cambridge: Cambridge University Press;2012. - 523 p. ISBN 978-0-521-15177-1

15. Pedley TJ. The Fluid Mechanics of Large Blood Vessels. -Cambridge: Cambridge University Press;1980. - 464 p. ISBN 978-0-521-22626-4

16. Perktold K, Rappitsch G. Computer Simulation of Arterial Blood Flow. Biological Flows. 1995;83–114. DOI: 10.1007/978-1-4757-9471-7_6

17. Stephanoff KD, Pedley TJ, Lawrence CJ, Secomb TW. Fluid flow along a channel with an asymmetric oscillating constriction. Nature. 1983;305(5936):692–5. DOI: 10.1038/305692a0

18. Malota Z, Glowacki J, Sadowski W, Kostur M. Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices. BMC Cardiovascular Disorders. 2018;18(1):132. DOI: 10.1186/s12872-018-0865-6

19. Sharma P, Itu L, Xudong Zheng, Kamen A, Bernhardt D, Suciu C et al. A framework for personalization of coronary flow computations during rest and hyperemia. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012;2012:6665–8. DOI: 10.1109/EMBC.2012.6347523

20. Simakov SS. Modern methods of mathematical modeling of blood flow using reduced order methods. Computer Research and Modeling. 2018;10(5):581–604. DOI: 10.20537/2076-7633-2018-10-5-581-604

21. Frolov S.V., Aliev N.E., Korobov A.A., Sindeev S.V. Approaches to zero-dimensional modeling of the cardiovascular system and their use in assessing cerebral circulation. Bulletin of TulSU Technical science. 2018;10:240–8.

22. Duanmu Z, Chen W, Gao H, Yang X, Luo X, Hill NA. A One-Dimensional Hemodynamic Model of the Coronary Arterial Tree. Frontiers in Physiology. 2019;10:853. DOI: 10.3389/fphys.2019.00853

23. Lee J, Smith NP. The Multi-Scale Modelling of Coronary Blood Flow. Annals of Biomedical Engineering. 2012;40(11):2399–413. DOI: 10.1007/s10439-012-0583-7

24. Zhang J-M, Zhong L, Su B, Wan M, Yap JS, Tham JPL et al. Perspective on CFD studies of coronary artery disease lesions and hemodynamics: A review. International Journal for Numerical Methods in Biomedical Engineering. 2014;30(6):659–80. DOI: 10.1002/cnm.2625

25. Ojeda G, Galindo D, Cadena A, Percybrooks WS, Velez JC, Juan PTP. Two-Dimensional Simulation of Blood Flow in Thoracic Aorta. ICBET ’ 19: 2019 9th International Conference on Biomedical Engineering and Technology. 2019. P. 153-159. DOI: 10.1145/3326172.3326206.

26. Saveljic I, Nikolic D, Milosevic Z, Isailovic V, Nikolic M, Parodi O et al. 3D Modeling of Plaque Progression in the Human Coronary Artery. Proceedings. 2018;2:388. DOI: 10.3390/ICEM18-05213

27. Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S et al. Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms. Journal of the American College of Cardiology. 2011;58(19):1989–97. DOI: 10.1016/j.jacc.2011.06.066

28. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H et al. Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease. Journal of the American College of Cardiology. 2014;63(12):1145–55. DOI: 10.1016/j.jacc.2013.11.043

29. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo B-K, van Mieghem C et al. Diagnostic Accuracy of Fractional Flow Reserve From Anatomic CT Angiography. JAMA. 2012;308(12):1237–45. DOI: 10.1001/2012.jama.11274

30. Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG, Min JK, Leipsic JA et al. 1185Head-to-head comparison of FFR-CT against coronary CT angiography and myocardial perfusion imaging for the diagnosis of ischaemia. European Heart Journal. 2018;39(Suppl 1): 234–5. DOI: 10.1093/eurheartj/ehy565.1185

31. De Geer J, Sandstedt M, Björkholm A, Alfredsson J, Janzon M, Engvall J et al. Software-based on-site estimation of fractional flow reserve using standard coronary CT angiography data. Acta Radiologica. 2016;57(10):1186–92. DOI: 10.1177/0284185115622075

32. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM et al. Coronary CT Angiography–derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. Radiology. 2018;288(1):64–72. DOI: 10.1148/radiol.2018171291

33. Coenen A, Kim Y-H, Kruk M, Tesche C, De Geer J, Kurata A et al. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography–Based Fractional Flow Reserve: Result From the MACHINE Consortium. Circulation: Cardiovascular Imaging. 2018;11(6):e007217. DOI: 10.1161/CIRCIMAGING.117.007217

34. Kato M, Hirohata K, Kano A, Higashi S, Goryu A, Hongo T et al. Fast CT-FFR Analysis Method for the Coronary Artery Based on 4D-CT Image Analysis and Structural and Fluid Analysis. ASME 2015 International Mechanical Engineering Congress and Exposition. 2015;3:V003T03A023. DOI: 10.1115/IMECE2015-51124.

35. Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T et al. Noninvasive CT-Derived FFR Based on Structural and Fluid Analysis: A Comparison With Invasive FFR for Detection of Functionally Significant Stenosis. JACC: Cardiovascular Imaging. 2017;10(6):663–73. DOI: 10.1016/j.jcmg.2016.07.005

36. Gamilov TM, Kopylov PYu, Pryamonosov RA, Simakov SS. Virtual fractional flow reserve assessment in patient-specific coronary networks by 1D hemodynamic model. Russian Journal of Numerical Analysis and Mathematical Modelling. 2015;30(5):269–76. DOI: 10.1515/rnam-2015-0024

37. Vassilevski Y, Gamilov T, Kopylov P. Personalized computation of fractional flow reserve in case of two consecutive stenoses. Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016). 2016. P. 90-97. DOI: 10.7712/100016.1794.8793

38. Gognieva D.G., Gamilov T.M., Pryamonosov R.A., Vasilevsky Yu.V., Simakov S.S., Liang F. et al. Noninvasive assessment of the fractional reserve of coronary blood flow with a one-dimensional mathematical model. Preliminary results of the pilot study. Russian Journal of Cardiology. 2019;24(3):60–8. DOI: 10.15829/1560-4071-2019-3-60-68

39. Garg S, Serruys PW. Coronary Stents. Journal of the American College of Cardiology. 2010;56(10 Suppl):S1–42. DOI: 10.1016/j.jacc.2010.06.007

40. Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R. In-Stent Restenosis in the Drug-Eluting Stent Era. Journal of the American College of Cardiology. 2010;56(23):1897–907. DOI: 10.1016/j.jacc.2010.07.028

41. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C et al. Comparison of Coronary CT Angiography, SPECT, PET, and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve. JAMA Cardiology. 2017;2(10):1100–7. DOI: 10.1001/jamacardio.2017.2471

42. Leipsic J, Yang T-H, Thompson A, Koo B-K, Mancini GBJ, Taylor C et al. CT Angiography (CTA) and Diagnostic Performance of Noninvasive Fractional Flow Reserve: Results From the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) Study. American Journal of Roentgenology. 2014;202(5):989–94. DOI: 10.2214/AJR.13.11441

43. Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Kruk M et al. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR. JACC: Cardiovascular Imaging. 2020;13(3):760–70. DOI: 10.1016/j.jcmg.2019.06.027

44. NICE. HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography. Medical technologies guidance [MTG32]. 2017. Available at: https://www.nice.org.uk/guidance/mtg32

45. Belotserkovskiy O.M., Kholodov A.S. Some dynamic models of external respiration and blood circulation, taking into account their connectivity and transport of substances. In: Computer models and the progress of medicine: a collection. -M.: Nauka;2001. - P. 127-163. ISBN 978-5-02-008371-4

46. Kumar A, Varshney CL, Sharma GC. Computational technique for flow in blood vessels with porous effects. Applied Mathematics and Mechanics. 2005;26(1):63–72. DOI: 10.1007/BF02438366

47. Formaggia L, Lamponi D, Quarteroni A. One-dimensional models for blood flow in arteries. Journal of Engineering Mathematics. 2003;47(3/4):251–76. DOI: 10.1023/B:ENGI.0000007980.01347.29


Review

For citations:


Suyundukova A.T., Demkin V.P., Mochula A.V., Gulya M.O., Maltseva A.N., Zavadovsky K.V. State of the art mathematical methods of the coronary blood flow modelling: background and clinical value. Kardiologiia. 2023;63(3):77-84. (In Russ.) https://doi.org/10.18087/cardio.2023.3.n1930

Views: 986


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)