Cardiometabolic Effects of Empagliflozin in Patients Undergoing Elective Percutaneous Coronary Intervention for Type 2 Diabetes Mellitus
https://doi.org/10.18087/cardio.2022.12.n1838
Abstract
Aim To evaluate cardiometabolic effects of empagliflozin in patients with ischemic heart disease and type 2 diabetes mellitus (DM) following elective percutaneous coronary intervention (PCI).
Materials and methods Patients meeting the inclusion/non-inclusion criteria were randomized into two groups of equal number using simple randomization with successively assigned numbers. Group 1 included 37 patients (18 men and 19 women) who gave their consent for the treatment with empagliflozin 10 mg/day in addition to their previous hypoglycemic therapy. The drug administration started one month prior to the elective PCI and continued for the next 11 months (treatment duration, 12 months). Group 2 (comparison group) consisted of age- and DM duration-matched patients (37 patients; 18 men and 19 women) who continued on their hypoglycemic therapy previously prescribed by endocrinologists during the entire study period. Before the study, 36.11 % patients of the empagliflozin group and 27.03 % of the comparison group had unsatisfactory glycemic control as shown by the level of glycated hemoglobin (HbA1c).
Results At 6 and 12 months of the study, fasting glycemia and HbA1c were significantly lower in the empagliflozin treatment group. The groups were comparable by the incidence of adverse outcomes: 8 (22.24 %) patients in the empagliflozin group and 10 (27.04 %) patients in the comparison group (р=0.787). The 12-month empagliflozin treatment reduced total cholesterol (C) by 5.56 % (p<0.05), low density lipoprotein (LDL) C by 3.67 % (p<0.05), visceral adipose tissue area (VATA) by 5.83 % (p<0.05), and subcutaneous adipose tissue area (SATA) by 3.54 % (p<0.05).
Conclusion The empagliflozin treatment for 30 days prior to and after elective PCI can enhance the effectiveness of myocardial revascularization due to the demonstrated beneficial cardiometabolic effects.
About the Authors
V. N. KaretnikovaRussian Federation
MD, PhD, Professor at the Department of Cardiology and Cardiovascular Surgery; Head of the Laboratory of Circulatory Pathology
A. A. Kchorlampenko
Russian Federation
MD, PhD, cardiologist
A. M. Kochergina
Russian Federation
MD, PhD, assistant lecturer at the Department of Cardiology and Cardiovascular Surgery; Researcher Laboratory of Circulatory Pathology
A. V. Osokina
Russian Federation
MD, PhD, Senior Researcher at the Laboratory of Circulatory Pathology
O. V. Gruzdeva
Russian Federation
MD, PhD, Head of the Laboratory for Homeostasis
D. P. Golubovskaia
Russian Federation
Postgraduate Student, Department of Cardiology and Cardiovascular Surgery
O. L. Barbarash
Russian Federation
MD, PhD, Professor, Head of the Department of Cardiology and Cardiovascular Surgery; Director of Research Institute NII KPSSZ
References
1. Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. The Lancet Diabetes & Endocrinology. 2018;6(9):691–704. DOI: 10.1016/S2213-8587(18)30141-4
2. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine. 2019;380(4):347–57. DOI: 10.1056/NEJMoa1812389
3. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine. 2015;373(22):2117–28. DOI: 10.1056/NEJMoa1504720
4. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine. 2016;375(4):311–22. DOI: 10.1056/NEJMoa1603827
5. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine. 2016;375(19):1834–44. DOI: 10.1056/NEJMoa1607141
6. Katsuki A, Sumida Y, Murashima S, Murata K, Takarada Y, Ito K et al. Serum Levels of Tumor Necrosis Factor-α Are Increased in Obese Patients with Noninsulin-Dependent Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism. 1998;83(3):859–62. DOI: 10.1210/jcem.83.3.4618
7. Cosentino F, Grant PJ, Aboyans V, Bailey GJ, Ceriello А, Delgado V et al. Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds/Leeds Teaching Hospitals NHS Trust, LIGHT Laboratories, Clarendon Way. Russian Journal of Cardiology. 2020;25(4):101–61. DOI: 10.15829/1560-4071-2020-3839
8. Dedov I.I., Shestakova M.V., Mayorov A.Yu., Vikulova O.K., Galstyan G.R., Kuraeva T.L. et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 9th edition. Diabetes mellitus. 2019;22(S1-1):1–144. DOI: 10.14341/DM221S1
9. Dedov I.I., Shestakova M.V., Galstyan G.R., Grigoryan O.R., Esayan R.M., Kalashnikov V.Yu. et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V. (7th edition). Diabetes mellitus. 2015;18(1S):1–112. DOI: 10.14341/DM20151S1-112
10. Brel N.K., Kokov A.N., Gruzdeva O.V. Advantages and disadvantages of different methods for diagnosis of visceral obesity. Obesity and metabolism. 2019;15(4):3–8. DOI: 10.14341/omet9510
11. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL et al. Kidney disease : Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements. 2012;2(1):1– 138. DOI: 10.1038/kisup.2012.1
12. Hashikata T, Ikutomi M, Jimba T, Shindo A, Kakuda N, Katsushika S et al. Empagliflozin attenuates neointimal hyperplasia after drug-eluting-stent implantation in patients with type 2 diabetes. Heart and Vessels. 2020;35(10):1378–89. DOI: 10.1007/s00380-020-01621-0
13. Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ et al. Empagliflozin improves glycaemic and weight control as addon therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes, Obesity and Metabolism. 2014;16(2):147–58. DOI: 10.1111/dom.12188
14. Sato T, Aizawa Y, Yuasa S, Kishi S, Fuse K, Fujita S et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovascular Diabetology. 2018;17(1):6. DOI: 10.1186/s12933-017-0658-8
15. Inzucchi SE, Davies MJ, Khunti K, Trivedi P, George JT, Zwiener I et al. Empagliflozin treatment effects across categories of baseline HbA1c, body weight and blood pressure as an add-on to metformin in patients with type 2 diabetes. Diabetes, Obesity and Metabolism. 2021;23(2):425–33. DOI: 10.1111/dom.14234
16. Ridderstrale M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC. Comparison of empagliflozin and glimepiride as addon to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. The Lancet Diabetes & Endocrinology. 2014;2(9):691–700. DOI: 10.1016/S2213-8587(14)70120-2
17. Neeland IJ, McGuire DK, Chilton R, Crowe S, Lund SS, Woerle HJ et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diabetes and Vascular Disease Research. 2016;13(2):119–26. DOI: 10.1177/1479164115616901
18. Wu P, Wen W, Li J, Xu J, Zhao M, Chen H et al. Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of SGLT2 Inhibitor on Blood Leptin and Adiponectin Level in Patients with Type 2 Diabetes. Hormone and Metabolic Research. 2019;51(08):487–94. DOI: 10.1055/a-0958-2441
19. Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte. 2018;7(2):121–8. DOI: 10.1080/21623945.2017.1413516
20. Nguyen PAH, Heggermont WA, Vanhaverbeke M, Dubois C, Vydt T, Voros G et al. Leptin-adiponectin ratio in pre-diabetic patients undergoing percutaneous coronary intervention. Acta Cardiologica. 2015;70(6):640–6. DOI: 10.1080/AC.70.6.3120175
21. Byrne RA, Eeckhout E, Sardella G, Stella P, Verheye S. PCI in Patients with Diabetes: Role of the Cre8 Drug-eluting Stent. Interventional Cardiology Review. 2017;12(1):13–7. DOI: 10.15420/icr.2016:28:2
22. Delhaye C, Kpogbemabou N, Modine T, Lemesle G, Staels B, Mahmoudi M et al. Long-term prognostic value of preprocedural adiponectin levels in patients undergoing percutaneous coronary intervention. International Journal of Cardiology. 2013;168(5):4921–4. DOI: 10.1016/j.ijcard.2013.07.092
23. Mito T, Miura S, Iwata A, Morii J, Sugihara M, Ike A et al. Determination of the cut-off plasma adiponectin level associated with a lower risk of restenosis in patients with stable angina. Coronary Artery Disease. 2011;22(7):451–7. DOI: 10.1097/MCA.0b013e3283495d43
24. Zou H, Zhou B, Xu G. SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease. Cardiovascular Diabetology. 2017;16(1):65. DOI: 10.1186/s12933-017-0547-1
25. Toto RD. SGLT-2 Inhibition: A Potential New Treatment for Diabetic Kidney Disease? Nephron. 2017;137(1):64–7. DOI: 10.1159/000450895
Review
For citations:
Karetnikova V.N., Kchorlampenko A.A., Kochergina A.M., Osokina A.V., Gruzdeva O.V., Golubovskaia D.P., Barbarash O.L. Cardiometabolic Effects of Empagliflozin in Patients Undergoing Elective Percutaneous Coronary Intervention for Type 2 Diabetes Mellitus. Kardiologiia. 2022;62(12):64-72. https://doi.org/10.18087/cardio.2022.12.n1838