ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Red cell distribution width as a predictor of impaired exercise capacity in patients with heart failure

https://doi.org/10.18087/cardio.2022.4.n1813

Abstract

Aim    To test a hypothesis that increased values of red cell distribution width (RDW) in patients with chronic heart failure (CHF) can be related with low exercise tolerance.
Material and methods    102 patients were evaluated who had CHF with mid-range and reduced left ventricular ejection fraction (LV EF) without anemia (72% men, mean age 66±10.2 years). Cardiopulmonary stress test (CPST), echocardiography, 6‑min walk test (6MWT), blood count, and measurements of N-terminal pro-brain natriuretic peptide (NT-pro-BNP) and serum iron were performed.
Results    The average LV EF was 39±8.7 %; the peak oxygen consumption (VO2peak) was 13.7±4.8 ml /kg /min; and the median NT-pro-BNP was 595.3 pg /ml (Q1–3 1443–2401). RDW variables, including the RDW coefficient of variation (RDW-CV) and RDW standard deviation (RDW-SD), were not significantly related with serum iron or hemoglobin concentrations. A one-factor linear regression analysis showed a significant correlation of VO2peak with RDW-SD (р=0.039). A multivariate linear regression analysis with adjustments for LV EF, hemoglobin concentration, and age did not reveal any significant correlation of VO2peak with RDW variables. The distance covered in the 6MWT was significantly associated with RDW-CV both in the one-factor analysis and with adjustments for LV EF, hemoglobin and serum iron concentrations, and age.
Conclusion    This study showed that high RDW values in CHF patients without anemia predicted low exercise tolerance regardless of the age, LV systolic function, and hemoglobin and serum iron concentrations. A 16% increase in RDW-CV significantly decreased the likelihood of covering a distance longer than 360 m during 6 min.

About the Authors

N. A. Karanadze
Medical Research and Educational Center, Lomonosov Moscow State University; Faculty of Fundamental Medicine, Lomonosov Moscow State University
Russian Federation

cardiologist

Moscow, Russia



Yu. L. Begrambekova
Medical Research and Educational Center, Lomonosov Moscow State University; Faculty of Fundamental Medicine, Lomonosov Moscow State University
Russian Federation

Leading Researcher Medical Research and Education Center of Moscow State University M.V. Lomonosova

Moscow, Russia



E. N. Borisov
Medical Research and Educational Center, Lomonosov Moscow State University; Faculty of Fundamental Medicine, Lomonosov Moscow State University
Russian Federation

Researcher

Moscow, Russia



Ya. A. Orlova
Medical Research and Educational Center, Lomonosov Moscow State University; Faculty of Fundamental Medicine, Lomonosov Moscow State University
Russian Federation

Head of the Department of Age-Associated Diseases Medical Research Center of Moscow State University M.V. Lomonosova

Moscow, Russia



References

1. Tereshchenko S.N., Galyavich A.S., Uskach T.M., Ageev F.T., Arutyunov G.P., Begrambekova Yu.L. et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):311–74. DOI: 10.15829/1560-4071-2020-4083

2. Nolan J, Flapan AD, Capewell S, MacDonald TM, Neilson JM, Ewing DJ. Decreased cardiac parasympathetic activity in chronic heart failure and its relation to left ventricular function. British Heart Journal. 1992;67(6):482–5. DOI: 10.1136/hrt.67.6.482

3. Florea VG, Mareyev VY, Achilov AA, Popovici MI, Coats AJ, Belenkov YN. Central and peripheral components of chronic heart failure: determinants of exercise tolerance. International Journal of Cardiology. 1999;70(1):51–6. DOI: 10.1016/s0167-5273(99)00047-9

4. Ferguson DW, Berg WJ, Roach PJ, Oren RM, Mark AL. Effects of heart failure on baroreflex control of sympathetic neural activity. The American Journal of Cardiology. 1992;69(5):523–31. DOI: 10.1016/0002-9149(92)90998-e

5. Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96(2):526–34. DOI: 10.1161/01.cir.96.2.526

6. Allen LA, Felker GM, Mehra MR, Chiong JR, Dunlap SH, Ghali JK et al. Validation and Potential Mechanisms of Red Cell Distribution Width as a Prognostic Marker in Heart Failure. Journal of Cardiac Failure. 2010;16(3):230–8. DOI: 10.1016/j.cardfail.2009.11.003

7. Felker GM, Allen LA, Pocock SJ, Shaw LK, McMurray JJV, Pfeffer MA et al. Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke Databank. Journal of the American College of Cardiology. 2007;50(1):40–7. DOI: 10.1016/j.jacc.2007.02.067

8. Okonko DO, Mandal AKJ, Missouris CG, Poole-Wilson PA. Disordered Iron Homeostasis in Chronic Heart Failure. Journal of the American College of Cardiology. 2011;58(12):1241–51. DOI: 10.1016/j.jacc.2011.04.040

9. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B et al. Iron Deficiency Predicts Impaired Exercise Capacity in Patients With Systolic Chronic Heart Failure. Journal of Cardiac Failure. 2011;17(11):899–906. DOI: 10.1016/j.cardfail.2011.08.003

10. Förhécz Z, Gombos T, Borgulya G, Pozsonyi Z, Prohászka Z, Jánoskuti L. Red cell distribution width in heart failure: Prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. American Heart Journal. 2009;158(4):659–66. DOI: 10.1016/j.ahj.2009.07.024

11. Söderholm M, Borné Y, Hedblad B, Persson M, Engström G. Red Cell Distribution Width in Relation to Incidence of Stroke and Carotid Atherosclerosis: A Population-Based Cohort Study. PLOS ONE. 2015;10(5):e0124957. DOI: 10.1371/journal.pone.0124957

12. Patel KV, Semba RD, Ferrucci L, Newman AB, Fried LP, Wallace RB et al. Red Cell Distribution Width and Mortality in Older Adults: A Meta-analysis. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2010;65A(3):258–65. DOI: 10.1093/gerona/glp163

13. Huang S, Zhou Q, Guo N, Zhang Z, Luo L, Luo Y et al. Association between red blood cell distribution width and in-hospital mortality in acute myocardial infarction. Medicine. 2021;100(15):e25404. DOI: 10.1097/MD.0000000000025404

14. Chen X, Shen B, Zou J, Liu Z, Lv W, Cao X et al. The Prognostic Value of Red Blood Cell Distribution Width in Patients on Maintenance Hemodialysis. Blood Purification. 2016;42(4):314–21. DOI: 10.1159/000449421

15. Okonko DO, Marley SB, Anker SD, Poole-Wilson PA, Gordon MY. Suppression of erythropoiesis in patients with chronic heart failure and anaemia of unknown origin: evidence of an immune basis. International Journal of Cardiology. 2013;166(3):664–71. DOI: 10.1016/j.ijcard.2011.11.081

16. Minetti M, Agati L, Malorni W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: Pathogenetic implications for vascular diseases. Cardiovascular Research. 2007;75(1):21–8. DOI: 10.1016/j.cardiores.2007.03.007

17. Emans ME, van der Putten K, van Rooijen KL, Kraaijenhagen RJ, Swinkels D, van Solinge WW et al. Determinants of Red Cell Distribution Width (RDW) in Cardiorenal Patients: RDW is Not Related to Erythropoietin Resistance. Journal of Cardiac Failure. 2011;17(8):626–33. DOI: 10.1016/j.cardfail.2011.04.009

18. Nishiyama Y, Niiyama H, Harada H, Katou A, Yoshida N, Ikeda H. Effect of Exercise Training on Red Blood Cell Distribution Width as a Marker of Impaired Exercise Tolerance in Patients with Coronary Artery Disease. International Heart Journal. 2016;57(5):553–7. DOI: 10.1536/ihj.16-015

19. Hong S-J, Youn J-C, Oh J, Hong N, Lee HS, Park S et al. Red Cell Distribution Width as an Independent Predictor of Exercise Intolerance and Ventilatory Inefficiency in Patients with Chronic Heart Failure. Yonsei Medical Journal. 2014;55(3):635. DOI: 10.3349/ymj.2014.55.3.635

20. Van Craenenbroeck EM, Pelle AJ, Beckers PJ, Possemiers NM, Ramakers C, Vrints CJ et al. Red cell distribution width as a marker of impaired exercise tolerance in patients with chronic heart failure. European Journal of Heart Failure. 2012;14(1):54–60. DOI: 10.1093/eurjhf/hfr136


Review

For citations:


Karanadze N.A., Begrambekova Yu.L., Borisov E.N., Orlova Ya.A. Red cell distribution width as a predictor of impaired exercise capacity in patients with heart failure. Kardiologiia. 2022;62(4):30-35. https://doi.org/10.18087/cardio.2022.4.n1813

Views: 2601


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)