ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

The left atrial appendage thrombosis of in patients with persistent atrial fibrillation after the novel coronavirus infection

https://doi.org/10.18087/cardio.2022.3.n1790

Abstract

Aim      To evaluate the incidence and features of left atrial appendage (LAA) thrombosis in patients with persistent atrial fibrillation (AF) after novel coronavirus infection (COVID-19).

Material and methods  Percutaneous echocardiography (pcEchoCG) was performed for 128 patients with persistent AF prepared for cardioversion, 36 (28.1 %) of whom had had COVID-19. In 3 (8.3 %) patients, the lung lesion area was 50–75 %; in 31 (86.1 %) patients, 25–50 %; in 1 (2.8 %) patient, less than 25 %. One patient had no lung lesion. Median time from the onset of COVID-19 to the patient enrollment in the study was 76.5 days. At the time of enrollment, the polymerase chain reaction test for SARS-CoV-2 was negative in all patients.

Results Patients after COVID-19 and those who had not had COVID-19 were comparable by age (62.5±9.2 and 62.4±9.1 years, respectively; р=0.956), gender (men 52.8 and 59.8 %, respectively; р=0.471), and risk of stroke (score 2.19±1.28 and score 1.95±1.35, respectively; р=0.350). Duration of the last arrhythmia episode was longer for patients after COVID-19 than for the comparison group (76.5 and 45.0 days, respectively; р=0.011). All patients received oral anticoagulants. 55.6 % of COVID-19 patients received rivaroxaban, whereas 62.0% of patients who had not had COVID-19 were treated with apixaban. Median duration of the anticoagulant treatment was longer for COVID-19 patients than for the comparison group (61.5 and 32.0 days; р=0.051). LAA thrombus was detected in 7 (19.4 %) patients after COVID-19 and in 6 (6.5 %) patients of the comparison group (р=0.030). In COVID-19 patients, the thrombus adhered to LAA wall over the entire thrombus length whereas in patients who had not have COVID-19, the thrombus had a free part that formed a sharp angle with LAA walls. In the presence of LAA thrombus, the LAA blood flow velocity was considerably higher for COVID-19 patients than for the comparison group (31.0±8.9 and 18.8±4.9 cm/sec, respectively; p=0.010). At the follow-up examination performed at 24.0 days on the average, the thrombus was found to be dissolved in 80 and 50% of patients after and without COVID-19, respectively (р=0.343).

Conclusion      In patients with persistent AF after the novel coronavirus infection, LAA thrombosis was detected more frequently than in patients who had never had COVID-19; it was characterized by mural localization and was not associated with a decrease in LAA blood flow velocity.

 

About the Authors

E. S. Mazur
Tver State Medical University
Russian Federation

MD, Professor, Head of Chair of Hospital Therapy and Occupational Diseases

Tver



V. V. Mazur
Tver State Medical University
Russian Federation

MD, Chair of Hospital Therapy and Occupational Diseases

Tver



N. D. Bazhenov
Tver State Medical University
Russian Federation

Chair of Hospital Therapy and Occupational Diseases

Tver



M. Ye. Kunitsina
Tver State Medical University
Russian Federation

Infectious Disease Hospital Cardiologist

Tver



References

1. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Temporary guidelines of the Ministry of Health of the Russian Federation. Version 11 of 07.05.2021. Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/055/735/original/BМР_COVID-19.pdf. [Russian: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. Версия 11 (07.05.2021). Москва. Доступно на: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/055/735/original/BМР_COVID-19.pdf].

2. European Society of Cardiology. ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. Last updated on 10 June 2020. Avaible at: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance.

3. Shlyakho EV, Konradi AO, Arutyunov GP, Arutyunov AG, Bautin AE,

4. Boytsov SA, et al. Guidelines for the diagnosis and treatment of circulatory

5. diseases in the context of the COVID-19 pandemic. Russian Journal of Cardiology.

6. ;25(3):129–48. [Russian: Шляхто Е.В., Конради А.О., Ару-

7. тюнов Г.П., Арутюнов А.Г., Баутин А.Е., Бойцов С.А. и др. Руководство

8. по диагностике и лечению болезней системы кровообращения в кон-

9. тексте пандемии COVID-19. Российский кардиологический журнал.

10. ;25(3):129-48]. DOI: 10.15829/1560-4071-2020-3-380.

11. Napalkov DA, Sokolova AA, Skripka AI. Features of the management of patients with atrial fibrillation during the COVID-19 pandemic: current questions and possible answers, Consilium Medicum. 2021; 23 (1): 32–34. [Russian: Напалков Д.А., Соколова А.А., Скрипка А.И. Особенности ведения пациентов с фибрилляцией предсердий во время пандемии COVID-19: актуальные вопросы и возможные ответы. Consilium Medicum. 2021; 23 (1): 32–34.] DOI: 10.26442/20751753.2021.1.200669.

12. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019;139:e56–e528. DOI: 10.1161/CIR.0000000000000659.

13. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020; 323 (18): 1775–6. DOI: 10.1001/jama.2020.4683.

14. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). European Heart Journal (2020) 00, 1–125. DOI:10.1093/eurheartj/ehaa612.

15. Gawałko M, Kapłon-Cieślicka A, Hohl M, Dobrev D, Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. Int J Cardiol Heart Vasc 2020; 30: 100631. DOI: 10.1016/j.ijcha.2020.100631

16. Sala S, Peretto G, De Luca G, Nicola Farina N, Campochiaro C, Tresoldi M, et al. Low prevalence of arrhythmias in clinically stable COVID-19 patients. Pacing Clin Electrophysiol 2020; 43 (8): 891–93. DOI: 10.1111/pace.13987

17. Xu JF, Wang L, Zhao L, Li F, Liu J, Zhang L, et al. Risk assessment of venous thromboembolism and bleeding in COVID-19 patients. Research Sqare. 2020. doi:10.21203/rs.3.rs-18340/v1

18. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421-1424.

19. Chen J, Wang X, Zhang S, Lin B, Wu X, Wang Y, et al. Findings of acute pulmonary embolism in COVID-19 patients. Clinical and Applied Thrombosis/Hemostasis 2020;26:1-8. DOI:10.1177/1076029620936772.

20. Klok FA, Kruip MJ, Van der Meer NJ, Arbousd MS, Gommerse DAMPJ, Kantf KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. DOI:10.1016/j.thromres.2020.04.013

21. Zhang Y, Xiao M, Zhang S, Zhou X, Liu Zh, Wang J, et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med.2020;382(17):e38. DOI: 10.1056 / NEJMc2007575.

22. Fan BE, Umapathi T, Chua K, Chia YeW, Wong SW, Tan GWL, et al. Delayed catastrophic thrombotic events in young and asymptomatic post COVID‑19 patients. J Thromb Thrombolysis. 2021;51(4):971–977. DOI: 10.1007/s11239-020-02332-z.

23. Blagova OV, Kogan EA, Lutokhina YuA, Kukleva AD, Ainetdinova DH, Novosadov VM, et al. Subacute and chronic post-covid myoendocarditis: clinical presentation, role of coronavirus persistence and autoimmune mechanisms. Kardiologiia. 2021;61(6):11–27. [Russian: Благова О.В., Коган Е.А., Лутохина Ю.А., Куклева А.Д., Айнетдинова Д.Х., Новосадов В.М. и др. Постковидный миоэндокардит подострого и хронического течения: клинические формы, роль персистенции коронавируса и аутоиммунных механизмов. Кардиология. 2021;61(6):11–27.] DOI: 10.18087/cardio.2021.6.n1659.

24. Cresti A, Garcia-Fernandez MA, De Sensi F, Miracapillo G, Picchi A, Scalese M, Severi S. Prevalence of auricular thrombosis before atrial flutter cardioversion: a 17-year transoesophageal echocardiographic study. Europace 2016; 18: 450–456. DOI:10.1093/europace/euv128.

25. Khorkova NYu, Gizatulina TP, Belokurova AV, Gorbatenko EA, Krinochkin DV. Additional factors of thrombosis of the left atrial appendage in nonvalvular atrial fibrillation. Journal of Arrhythmology. 2020;27(2): 26–32.[Russian: Хорькова Н.Ю., Гизатулина Т.П., Белокурова А.В., Горбатенко Е.А., Криночкин Д.В. Дополнительные факторы тромбообразования ушка левого предсердия при неклапанной фибрилляции предсердий. Вестник aритмологии. 2020;27(2): 26-32.] DOI:10.35336/VA-2020-2-26-32.

26. Levi M, Thachil J. Coronavirus disease 2019 coagulopathy: disseminated intravascular coagulation and thrombotic microangiopathy—either, neither, or both. Semin Thromb Hemost 2020;46:781–784. DOI:10.1055/s-0040-1712156.

27. Oh JK, Park J-H, Lee J-H, Kim J, RN, Seong I-W. Shape and Mobility of a Left Ventricular Thrombus Are Predictors of Thrombus Resolution. Korean Circ J. 2019;49(9):829-837. DOI:10.4070/kcj.2018.0346.


Review

For citations:


Mazur E.S., Mazur V.V., Bazhenov N.D., Kunitsina M.Ye. The left atrial appendage thrombosis of in patients with persistent atrial fibrillation after the novel coronavirus infection. Kardiologiia. 2022;62(3):21-27. https://doi.org/10.18087/cardio.2022.3.n1790

Views: 1456


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)