Fibrogenesis Genes and Susceptibility to Coronary Atherosclerosis
https://doi.org/10.18087/cardio.2018.8.10160
Abstract
About the Authors
I. A. GoncharovaRussian Federation
T. B. Pecherina
Russian Federation
A. V. Markov
Russian Federation
V. V. Kashtalap
Russian Federation
N. V. Tarasenko
Russian Federation
V. P. Puzyrev
Russian Federation
O. L. Barbarash
Russian Federation
References
1. Yang W., Ng F. L., Chan K. et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1 /COL4A2 Locus Affects COL4A1 / COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet 2016;12 (7):e1006127. DOI: 10.1371/journal. pgen. 1006127.
2. Dixon Ian M. C.,Wigle J. T. Cardiac Fibrosis and Heart Failure: Cause or Effect? Springer 2015;436p. DOI: 10.1007/978-3-319-17437-2.
3. O'Donnell C.J., Nabel E. G. Genomics of Cardiovascular Disease. N. Engl J. Med 2011;365(22):2098-2109. DOI: 10.1056/NEJMra1105239.
4. Макеева О. А., Зыков М. В., Голубенко М. В. и др. Роль генетических факторов в прогнозировании осложнений на протяжении года после инфаркта миокарда. Кардиология 2013;53(10):16-23
5. Versmissen J., Oosterveer D. M., Yazdanpanah M. et al. Identifying genetic risk variants for coronary heart disease in familial hypercholesterolemia: an extreme genetics approach. Eur J. Hum Genet 2015;23 (3):381-387. DOI: 10.1038/ejhg. 2014.101.
6. LeBlanc M., Zuber V., Andreassen B. K. et al. Identifying Novel Gene Variants in Coronary Artery Disease and Shared Genes With Several Cardiovascular Risk Factors. Circ Res 2016;118 (1):83-94. DOI: 10.1161/ CIRCRES AHA. 115.306629.
7. Гончарова И. А., Макеева О. А., Голубенко М. В. и др. Гены фиброгенеза в детерминации предрасположенности к инфаркту миокарда. Молекулярная биология 2016;50 (1):81-90. DOI: 10.7868/S0026898415060099
8. Оро-Меландер М. Генетика ишемической болезни сердца: путь к этиологическим механизмам, новым мишеням терапии и более персонализированной профилакти ке. Кардиология: новости, мнения, обучение 2016;3 (10):15-28. DOI: 10.1111 /joim. 12407
9. Dehghan A., Bis J. C., White C. C. et al. Genome-Wide Association Study for Incident Myocardial Infarction and Coronary Heart Disease in Prospective Cohort Studies: The CHARGE Consortium. PLOS ONE 2016;7:1-16. DOI:10.1371/journal. pone. 0144997.
10. Sulkava M., Raitoharju E., Levula M. et al. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques - Tampere Vascular Study. Sci Rep 2017;7:41483. DOI: 10.1038/srep41483.
11. Гончарова И. А., Кучер А. Н., Тарасенко Н. В. и др. Разработка панели генетических маркеров фиброгенеза и оценка её информативности для русского населения г. Томска. Медицинская генетика 2015;8:7-12
12. The R. Project for Statistical Computing. URL: http://www.R-project.org. (accessed: 2015).
13. Sham P. C., Purcell S. M. Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet 2014;15:335-346. DOI: 10.1038/nrg3706.
14. Пузырев В. П., Макеева О. А., Голубенко М. В. Гены синтропий и сердечно-сосудистый континуум. Вестник ВОГиС 2006;10 (3):479-491
15. Пузырев В. П., Фрейдин М. Б. Генетический взгляд на феномен сочетанных заболеваний человека. Acta Naturae 2009;1 (3):57-63
16. Пузырев В. П. Генетические основы коморбидности у человека. Генетика 2015;51 (4):491-502. DOI: 10.7868/S0016675815040098
17. Papaspyridonos M., Smith A., Burnand K. G. et al. Novel Candidate Genes in Unstable Areas of Human Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol 2006;26 (8):1837-1844. DOI: 10.1161/01. ATV. 0000229695.68416.76.
18. Patel R. S., Su S., Neeland I.J.et al. The chromosome 9p21 risk locus is associated with angiographic and progression of coronary artery disease. Eur Heart J. 2010;31 (24):3017-3023. DOI: 10.1093/eur-heartj/ehq272.
19. Lian J., Ba Y., Dai D. et al. A replication study and a meta-analysis of the association between the CDKN2A rs1333049 polymorphism and coronary heart disease. J. Atheroscler Thromb 2014;21 (11):1109-1120.
20. Шестерня П. А., Сергеева А. С., Шульман В. А. и др. Локус 9р21.3 - генетический предиктор тяжести атеросклероза коронарных артерий. Атеросклероз и дислипидемии 2013;2 (11):46-51
21. Fang L., Du X.J., Gao X. M., Dart A. M. Activation of peripheral blood mononuclear cells and extracellular matrix and inflammatory gene profile in acute myocardial infarction. Clinical Science 2010;119 (4):175-183. DOI: 10.1042/CS20100011.
22. Kucharska-Newton A. M., Monda K. L., Campbell S. et al. Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaque morphology: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 2011;216 (1):151-156. DOI: 10.1016/j.atherosclerosis. 2011.01.038.
23. Cayla G., Hulot J. S., O'Connor S. A. et al. Clinical, angiographic, and genetic factors associated with earlycoronary stent thrombosis. JAMA 2011;306 (16):1765-1774.
24. Goodman T., Ferro A., Sharma P. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J. Clin Pharmacol 2008;66 (2):222-232. DOI: 10.1111/j.1365-2125.2008.03183.x.
25. Makeeva O. A., Sleptsov A. A., Kulish E. V. et al. Genomic Study of Cardiovascular Continuum Comorbidity. Acta Naturae 2015;7 (3):89-99.
26. Li J., Yu Y., Yang Y. et al. IGFBP7, a novel immunohistochemical marker in differentiating dermatofibroma from dermatofibrosarcoma protuberans. J. Eur Acad Dermatol Venereol 2012;26(3) 382385. DOI: 10.1111 /j.1468-3083.2011.04072. x.
27. Tomimaru Y., Eguchi H., Wada H. et al. IGFBP7 downregulation is associated with tumor progression and clinical outcome in hepatocellular carcinoma. Int J. Cancer 2012;130 (2):319-327. DOI: 10.1002/ijc. 25994.
28. Benatar T. C., Amemiya Y., Evdokimova V. et al. N- and C-terminal peptides of the tumor suppressor protein IGFBP7 differentially induce growth arrest or senescence in breast cancer cells. Cancer Research 2014;4 (19):2249. DOI: 10.1158/1538-7445. AM2014-2249.
29. Verhagen H., Smit M., de Leeuw D. et al. IGFBP7 eradicates leukemic stem and progenitor cells in acute myeloid leukemia. Cancer Research 2015;75 (15):2339. DOI: 10.1158/1538-7445. AM2015-2339.
30. Guo X. H., Liu L. X., Zhang H. Y. et al. Insulin-like growth factor binding protein-related protein 1 contributes to hepatic fibrogenesis.J. Digestive Diseases 2014;15:202-10. DOI:10.1111/1751-2980.12126.
31. Gandhi P. U., Gaggin H. K., Sheftel A. D. et al. Prognostic usefulness of insulin-like growth factor-binding protein 7 in heart failure with reduced ejection fraction: a novel biomarker of myocardial diastolic function? American J. Cardiology 2014;114:1543-1549. DOI:10.1016/j.amjcard. 2014.08.018.
32. Shaver A., Nichols А., Thompson Е. et al. Role of Serum Biomarkers in Early Detection of Diabetic Cardiomyopathy in the West Virginian Population. Int J. Med Sci 2016;13 (3):161-168. DOI: 10.7150/ijms. 14141.
33. Гончарова И. А., Назаренко М. С., Тарасенко Н. В. и др. Генетические маркеры фиброгенеза при хроническом вирусном гепатите С. Медицинская генетика 2016;15 (12 (174):29-36
34. Martinet W., Knaapen M. W., De Meyer G. R. et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002;106 (8):927-932.
35. Mahmoudi M., Mercer J., Bennett M. DNA damage and repair in atherosclerosis. Cardiovasc Res 2006;71 (2):259-268. DOI: 10.1016/j.cardiores. 2006.03.002.
36. Gray K., Kumar S., Figg N. et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res 2015;116 (5):816-826. DOI: 10.1161/ CIRCRESAHA. 116.304921.
37. Teslovich T. M., Musunuru K., Smith A. V. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010;466 (7307):707-713. DOI: 10.1038/nature09270.
38. Gao F., Ihn H. E., Medina M. W., Krauss R. M. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Hum Mol Genet 2013;22 (7):1424-31. DOI: 10.1093/hmg/dds559.
39. Lee J. D., Lin Y. H., Hsu H. L. et al. Genetic polymorphisms of low density lipoprotein receptor can modify stroke presentation. Neurol Res 2010;32 (5):535-540. DOI: 10.1179/174313209X455682.
40. Holloway J. W., Yang I. A., Ye S. Variation in the toll-like receptor 4 gene and susceptibility to myocardial infarction. Pharmacogenet Genomics 2005;15:15-21.
41. Mann D. L. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 2011;108 (9):1133-1145. DOI: 10.1161/ CIRCRESAHA. 110.226936.
42. Dimas G., Iliadis F., Grekas D. Matrix metalloproteinases, atherosclerosis, proteinuria and kidney disease: Linkage-based approaches. Hippokratia 2013;17 (4):292-297.
43. Zhang K., Zhang L., Zhou B. et al. Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis: evidence from meta-analysis. Thromb Res 2012;130 (4):e203-208. DOI: 10.1016/j.thromres. 2012.07.008.
44. Guo X., Shao L., Li J.et al. Association of TLR-4 regulatory variants (rs41426344 and rs7873784) with rheumatoid arthritis in a Chinese population. Eur J. Inflammat 2016;14 (2):118-123. DOI: 10.1177/1721727X16660559.
45. Boekholdt S. M., Agema W. R., Peters R. J.et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003;107 (19):2416-2421. DOI: 10.1161/01. CIR. 0000068311.40161.28.
46. Ameziane N., Beillat T., Verpillat P. et al. Association of theToll-like receptor 4 gene Asp299Gly polymorphism with acute coronaryevents. Arterioscler Thromb Vasc Biol 2003;23: e61-e64. DOI.org/10.1161/01.ATV.0000101191.92392.1D.
47. Liu F., Lu W., Qian Q. et al. Frequency of TLR 2, 4, and 9 Gene Polymorphisms in Chinese Population and Their Susceptibility to Type 2 Diabetes and Coronary Artery Disease. J. Biomed Biotechnol 2012;2012:373945. DOI: 10.1155/2012/373945.
48. Nebel A., Flachsbart F., Schäfer A. et al. Role of the toll-like receptor 4 polymorphism Asp299Gly in longevity and myocardial infarction in German men. Mech Ageing Dev 2007;128 (5-6):409-411. DOI: 10.1016/j.mad. 2007.04.001.
49. Hommels M.J., Kroon A. A., Netea M. G. et al. The Asp299Gly Toll-like receptor 4 polymorphism in advanced aortic atherosclerosis. Neth J. Med 2007;65 (6): 203-207.
50. Mendez F. L., Watkins J. C., Hammer M. F. Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations. Mol Biol Evol 2012;29 (6): 1513-520. DOI: 10.1093/molbev/msr301.
51. Cheng J. C., Yeh Y.J., Huang Y. H. et al. Hepatic expression of MxA and OAS1 in an ex vivo liver slice assay independently predicts treatment outcomes in chronic hepatitis C. J. Viral Hepatitis 2012;19 (2):e154 - e162. DOI: 10.1111/j.1365-2893.2011.01538.x.
52. Bader E. D., Noha G., Anany M. A. et al. Impact of OAS1 Exon 7 rs10774671 Genetic Variation on Liver Fibrosis Progression in Egyptian HCV Genotype 4 Patients. Viral Immunol 2015;28 (9):509-516. DOI: 10.1089/vim. 2015.0041.
Review
For citations:
Goncharova I.A., Pecherina T.B., Markov A.V., Kashtalap V.V., Tarasenko N.V., Puzyrev V.P., Barbarash O.L. Fibrogenesis Genes and Susceptibility to Coronary Atherosclerosis. Kardiologiia. 2018;58(8):33-44. (In Russ.) https://doi.org/10.18087/cardio.2018.8.10160