ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Heart failure with preserved left ventricular ejection fraction in patients with obstructive sleep apnea syndrome: prognostic value of biomarkers

https://doi.org/10.18087/cardio.2021.11.n1615

Abstract

Aim      To study the role of soluble ST2 (sST2), N-terminal pro-brain natriuretic peptide (NT-proBNP), and С-reactive protein (CRP) in patients with chronic heart failure and preserved left ventricular ejection fraction (CHF with pLVEF) and syndrome of obstructive sleep apnea (SOSA) in stratification of the risk for development of cardiovascular complications (CVC) during one month of a prospective observation.

Material and methods  The study included 71 men with SOSA with an apnea/hypopnea index (AHI) >15 per hour, abdominal obesity, and arterial hypertension. Polysomnographic study and echocardiography according to a standard protocol with additional evaluation of left ventricular myocardial fractional changes and work index were performed for all patients at baseline and after 12 months of observation. Serum concentrations of sST2 , NT-proBNP, and CRP were measured at baseline by enzyme-linked immunoassay (ELISA).

Results The ROC analysis showed that the cutoff point characterizing the development of CVC were sST2 concentrations ≥29.67 ng/l (area under the curve, AUC, 0.773, sensitivity 65.71 %, specificity 86.11 %; p<0.0001) while concentrations of NT-proBNP (AUC 0.619; p=0.081) and CRP (AUC 0.511; р=0.869) were not prognostic markers for the risk of CVC. According to data of the ROC analysis, all patients were divided into 2 groups based on the sST2 cutoff point: group 1 included 29 patients with ST2 ≥29.67 ng/l and group 2 included 42 patients with ST2 <29.67 ng/l. The Kaplan-Meyer analysis showed that the incidence of CVC was higher in group 1 than in group 2 (79.3 and 28.6 %, respectively, p<0.001). The regression analysis showed that adding values of AHI and left ventricular myocardial mass index (LVMMI) to sST2 in the model increased the analysis predictive significance.

Conclusion      Measuring sST2 concentration may be used as a noninvasive marker for assessment of the risk of CVC development in patients with CHF with pLVEF and SOSA within 12 months of observation. Adding AHI and LVMMI values to the model increases the predictive significance of the analysis.

 

About the Authors

E. V. Grakova
Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk
Russian Federation

Doctor of Medical Sciences, Leading Researcher of the Department of Myocardial Pathology



A. V. Yakovlev
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Candidate of Medical Sciences, Associate Professor of the Department of Therapy, Hematology and Transfusiology



S. N. Shilov
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Doctor of Medical Sciences, Associate Professor of the Department of Pathological Physiology and Clinical Pathophysiology 



E. N. Berezikova
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Doctor of Medical Sciences, Associate Professor of the Department of Polyclinic Therapy and General Medical Practice



K. V. Kopeva
Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk
Russian Federation

Candidate of Medical Sciences, Researcher of the Department of Myocardial Pathology



N. F. Yakovleva
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Candidate of Medical Sciences, Assistant of Polyclinic Therapy and General Medical Practice



O. N. Ogurkova
Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk
Russian Federation

Candidate of Medical Sciences, Researcher of the Department of Clinical Laboratory Diagnostics



A. T. Teplyakov
Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk
Russian Federation

Doctor of Medical Sciences, Professor, Honored Scientist of the Russian Federation, Chief Researcher



References

1. van Deursen VM, Urso R, Laroche C, Damman K, Dahlström U, Tavazzi L et al. Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. European Journal of Heart Failure. 2014;16(1):103–11. DOI: 10.1002/ejhf.30

2. Fietze I, Laharnar N, Obst A, Ewert R, Felix SB, Garcia C et al. Prevalence and association analysis of obstructive sleep apnea with gender and age differences - Results of SHIP-Trend. Journal of Sleep Research. 2019;28(5):e12770. DOI: 10.1111/jsr.12770

3. Butt M, Dwivedi G, Khair O, Lip GYH. Obstructive sleep apnea and cardiovascular disease. International Journal of Cardiology. 2010;139(1):7–16. DOI: 10.1016/j.ijcard.2009.05.021

4. Tyurin V.P., Savchuk О.V., Proskurnova V.V., Dobrikov E.A., Kulagina A.M. Obstructive sleep apnea as an independent predictor of cardiovascular mortality. Bulletin of Pirogov National Medical & Surgical Center. 2020;15(2):126–8. DOI: 10.25881/BPNMSC.2020.95.30.022

5. Evlampieva L.G., Yaroslavskaya E.I., Kharats V.E. Relationships between obstructive sleep apnea syndrome and cardiovascular risk factors. The Siberian Journal of Clinical and Experimental Medicine. 2021;36(1):58–65. DOI: 10.29001/2073-8552-2021-36-1-58-65

6. Mentz RJ, Fiuzat M. Sleep-Disordered Breathing in Patients with Heart Failure. Heart Failure Clinics. 2014;10(2):243–50. DOI: 10.1016/j.hfc.2013.10.001

7. Kasai T, Bradley TD. Obstructive Sleep Apnea and Heart Failure. Journal of the American College of Cardiology. 2011;57(2):119–27. DOI: 10.1016/j.jacc.2010.08.627

8. Kheirandish-Gozal L, Gozal D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. International Journal of Molecular Sciences. 2019;20(3):459. DOI: 10.3390/ijms20030459

9. Sozer V, Kutnu M, Atahan E, Calıskaner Ozturk B, Hysi E, Cabuk C et al. Changes in inflammatory mediators as a result of intermittent hypoxia in obstructive sleep apnea syndrome. The Clinical Respiratory Journal. 2018;12(4):1615–22. DOI: 10.1111/crj.12718

10. Bayés-Genis A, González A, Lupón J. ST2 in Heart Failure: The Lungs Claim Their Contribution. Circulation: Heart Failure. 2018;11(12):e005582. DOI: 10.1161/CIRCHEARTFAILURE.118.005582

11. Najjar E, Faxén UL, Hage C, Donal E, Daubert J-C, Linde C et al. ST2 in heart failure with preserved and reduced ejection fraction. Scandinavian Cardiovascular Journal. 2019;53(1):21–7. DOI: 10.1080/14017431.2019.1583363

12. Dalal JJ, Digrajkar A, Das B, Bansal M, Toomu A, Maisel AS. ST2 elevation in heart failure, predictive of a high early mortality. Indian Heart Journal. 2018;70(6):822–7. DOI: 10.1016/j.ihj.2018.08.019

13. Richards AM. ST2 and Prognosis in Chronic Heart Failure. Journal of the American College of Cardiology. 2018;72(19):2321–3. DOI: 10.1016/j.jacc.2018.08.2164

14. Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL et al. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure. JACC: Heart Failure. 2017;5(4):280–6. DOI: 10.1016/j.jchf.2016.09.010

15. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2013;62(16):e147-239. DOI: 10.1016/j.jacc.2013.05.019

16. McCarthy CP, Januzzi JL. Soluble ST2 in Heart Failure. Heart Failure Clinics. 2018;14(1):41–8. DOI: 10.1016/j.hfc.2017.08.005

17. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA et al. Plasma Biomarkers Reflecting Profibrotic Processes in Heart Failure With a Preserved Ejection Fraction: Data From the Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction Study. Circulation: Heart Failure. 2016;9(1):e002551. DOI: 10.1161/CIRCHEARTFAILURE.115.002551

18. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P et al. High-Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure. Circulation: Heart Failure. 2011;4(2):180–7. DOI: 10.1161/CIRCHEARTFAILURE.110.958223

19. Gabryelska A, Kuna P, Antczak A, Białasiewicz P, Panek M. IL-33 Mediated Inflammation in Chronic Respiratory Diseases – Understanding the Role of the Member of IL-1 Superfamily. Frontiers in Immunology. 2019;10:692. DOI: 10.3389/fimmu.2019.00692

20. Bajwa EK, Mebazaa A, Januzzi JL. ST2 in Pulmonary Disease. The American Journal of Cardiology. 2015;115(7):44B-47B. DOI: 10.1016/j.amjcard.2015.01.040

21. Vasyuk Yu.A., Kopeeva M.V., Korneeva O.N. Recommendations for quantifying the structure and function of heart chambers. Russian Journal of Cardiology. 2012;17(3):1–28.

22. Frantz RP, Farber HW, Badesch DB, Elliott CG, Frost AE, McGoon MD et al. Baseline and Serial Brain Natriuretic Peptide Level Predicts 5-Year Overall Survival in Patients With Pulmonary Arterial Hypertension. Chest. 2018;154(1):126–35. DOI: 10.1016/j.chest.2018.01.009

23. Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, Rahimi HR, Tajfard M, Ferns G. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice. Journal of Cellular Physiology. 2018;233(11):8508–25. DOI: 10.1002/jcp.26791

24. Tugcu A, Guzel D, Yildirimturk O, Aytekin S. Evaluation of Right Ventricular Systolic and Diastolic Function in Patients with Newly Diagnosed Obstructive Sleep Apnea Syndrome without Hypertension. Cardiology. 2009;113(3):184–92. DOI: 10.1159/000193146

25. Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 Axis in Organ Fibrosis. Frontiers in Immunology. 2018;9:2432. DOI: 10.3389/fimmu.2018.02432

26. Ragusa R, Cabiati M, Guzzardi MA, D’Amico A, Giannessi D, Del Ry S et al. Effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver: study in the experimental model of Zucker rats. Experimental and Molecular Pathology. 2017;102(2):354–9. DOI: 10.1016/j.yexmp.2017.03.002

27. Brodovskaya T.O., Grishchenko O.O., Grishina I.F., Peretolchina T.F. Features of heart remodeling in patients with obstructive sleep apnea syndrome and its comorbid association with obesity in the context of the senilism concept. Russian Journal of Cardiology. 2019;4:27–34. DOI: 10.15829/1560-4071-2019-4-27-34

28. Vianello E, Dozio E, Tacchini L, Frati L, Corsi Romanelli MM. ST2/IL-33 signaling in cardiac fibrosis. The International Journal of Biochemistry & Cell Biology. 2019;116:105619. DOI: 10.1016/j.biocel.2019.105619

29. Sharim J, Daniels LB. Soluble ST2 and Soluble Markers of Fibrosis: Emerging Roles for Prognosis and Guiding Therapy. Current Cardiology Reports. 2020;22(6):41. DOI: 10.1007/s11886-020-01288-z


Review

For citations:


Grakova E.V., Yakovlev A.V., Shilov S.N., Berezikova E.N., Kopeva K.V., Yakovleva N.F., Ogurkova O.N., Teplyakov A.T. Heart failure with preserved left ventricular ejection fraction in patients with obstructive sleep apnea syndrome: prognostic value of biomarkers. Kardiologiia. 2021;61(11):77-88. https://doi.org/10.18087/cardio.2021.11.n1615

Views: 1536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)