ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Hypoxia – as a Possible Regulator of the Activity of Epicardial Mesothelial Cells After Myocardial Infarction

https://doi.org/10.18087/cardio.2021.6.n1476

Abstract

Aim      To study the effect of hypoxia on the activity of epithelial-mesenchymal transition (EMT) in epicardial cells, which provides formation of a specialized microenvironment.

Material and methods   This study used a model of experimental myocardial infarction created by ligation of the anterior descendent coronary artery. The activity of epicardial cells after a hypoxic exposure was studied with the hypoxia marker, pimonidazole, bromodeoxyuridine, immunofluorescent staining of heart cryosections, and in vitro mesothelial cell culture.

Results The undamaged heart maintained the quiescent condition of mesothelial cells and low levels of their proliferation, extracellular matrix protein production, and of the EMT activity. Acute ischemic injury induced moderate hypoxia in the epicardial/subepicardial region. This caused a global rearrangement of this region due to the initiation of EMT in cells, changes in the cell composition, and accumulation of extracellular matrix proteins. We found that the initiation of EMT in mesothelial cells may result in the formation of smooth muscle cell precursors, fibroblasts, and a population of Sca-1+ cardiac progenitor cells, which may both participate in construction of new blood vessels and serve as a mesenchymal link for the paracrine support of microenvironmental cells. In in vitro experiments, we showed that 72‑h hypoxia facilitated activation of EMT regulatory genes, induced dissembling of intercellular contacts, cell uncoupling, and increased cell plasticity.

Conclusion      The epicardium of an adult heart serves as a “reparative reserve” that can be reactivated by a hypoxic exposure. This creates a basis for an approach to influence the epicardium to modulate its activity for regulating reparative processes.

About the Authors

K. V. Dergilev
Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow
Russian Federation

Leading Researcher



Z. I. Tsokolaeva
Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow; V. A. Negovsky Research Institute of General Reanimatology, Moscow
Russian Federation

Leading Researcher



Yu. D. Vasilets
Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow
Russian Federation

research laboratory assistant



I. B. Beloglazova
Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow
Russian Federation

Senior Researcher



B. N. Kulbitsky
Hospital for War Veterans №3 of the Moscow City Health Department, Moscow
Russian Federation

Doctor



Ye. V. Parfyonova
Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow; Moscow State University, Faculty of Basic Medicine, Laboratory of Postgenomic Technologies in Medicine, Moscow
Russian Federation

Institute director



References

1. Bueno H, Moura B, Lancellotti P, Bauersachs J. The year in cardiovascular medicine 2020: heart failure and cardiomyopathies. European Heart Journal. 2021;42(6):657–70. DOI: 10.1093/eurheartj/ehaa1061

2. Lafuse WP, Wozniak DJ, Rajaram MVS. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells. 2020;10(1):51. DOI: 10.3390/cells10010051

3. Dergilev K.V., Vasilets Yu.D., Tsokolaeva Z.I., Zubkova E.S., Parfenova E.V. Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells. Therapeutic Archive. 2020;92(4):111–20. DOI: 10.26442/00403660.2020.04.000634

4. Dergilev KV, Shevchenko EK, Tsokolaeva ZI, Beloglazova IB, Zubkova ES, Boldyreva MA et al. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. International Journal of Molecular Sciences. 2020;21(24):9603. DOI: 10.3390/ijms21249603

5. Dergilev K.V., Komova A.V., Tsokolaeva Z.I., Beloglazova I.B., Parfenova E.V. Epicardium as a new target for regenerative technologies in cardiology. Genes and cells. 2020;15(2):33–40. DOI: 10.23868/202004016

6. Christoffels VM, Grieskamp T, Norden J, Mommersteeg MTM, Rudat C, Kispert A. Tbx18 and the fate of epicardial progenitors. Nature. 2009;458(7240):E8–9. DOI: 10.1038/nature07916

7. Rudat C, Kispert A. Wt1 and Epicardial Fate Mapping. Circulation Research. 2012;111(2):165–9. DOI: 10.1161/CIRCRESAHA.112.273946

8. Mikawa T, Gourdie RG. Pericardial Mesoderm Generates a Population of Coronary Smooth Muscle Cells Migrating into the Heart along with Ingrowth of the Epicardial Organ. Developmental Biology. 1996;174(2):221–32. DOI: 10.1006/dbio.1996.0068

9. Dettman RW, Denetclaw W, Ordahl CP, Bristow J. Common Epicardial Origin of Coronary Vascular Smooth Muscle, Perivascular Fibroblasts, and Intermyocardial Fibroblasts in the Avian Heart. Developmental Biology. 1998;193(2):169–81. DOI: 10.1006/dbio.1997.8801

10. Männer J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. The Anatomical Record. 1999;255(2):212–26. PMID: 10359522

11. Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Mentink MMT, Gourdie RG, Poelmann RE. Epicardium-Derived Cells Contribute a Novel Population to the Myocardial Wall and the Atrioventricular Cushions. Circulation Research. 1998;82(10):1043–52. DOI: 10.1161/01.RES.82.10.1043

12. Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Bergwerff M, Mentink MMT, Poelmann RE. Epicardial Outgrowth Inhibition Leads to Compensatory Mesothelial Outflow Tract Collar and Abnormal Cardiac Septation and Coronary Formation. Circulation Research. 2000;87(11):969–71. DOI: 10.1161/01.RES.87.11.969

13. Pérez-Pomares J-M, Carmona R, González-Iriarte M, Atencia G, Wessels A, Muñoz-Chápuli R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. The International Journal of Developmental Biology. 2002;46(8):1005–13. PMID: 12533024

14. Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Texas Heart Institute Journal. 2002;29(4):255–61. PMID: 12484609

15. Rothenberg F, Hitomi M, Fisher SA, Watanabe M. Initiation of apoptosis in the developing avian outflow tract myocardium. Developmental Dynamics. 2002;223(4):469–82. DOI: 10.1002/dvdy.10077

16. Schaefer KS, Doughman YQ, Fisher SA, Watanabe M. Dynamic patterns of apoptosis in the developing chicken heart. Developmental Dynamics. 2004;229(3):489–99. DOI: 10.1002/dvdy.10463

17. Chen TH-P, Chang T-C, Kang J-O, Choudhary B, Makita T, Tran CM et al. Epicardial Induction of Fetal Cardiomyocyte Proliferation via a Retinoic Acid-Inducible Trophic Factor. Developmental Biology. 2002;250(1):198–207. DOI: 10.1006/dbio.2002.0796

18. Zhou B, Honor LB, He H, Ma Q, Oh J-H, Butterfield C et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. Journal of Clinical Investigation. 2011;121(5):1894–904. DOI: 10.1172/JCI45529

19. Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini D et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid. Journal of Molecular and Cellular Cardiology. 2010;48(4):609–18. DOI: 10.1016/j.yjmcc.2009.11.008

20. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8. DOI: 10.1038/nature11044

21. von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circulation Research. 2012;110(12):1628–45. DOI: 10.1161/CIRCRESAHA.111.259960

22. Smits A, Riley P. Epicardium-Derived Heart Repair. Journal of Developmental Biology. 2014;2(2):84–100. DOI: 10.3390/jdb2020084

23. Missinato MA, Tobita K, Romano N, Carroll JA, Tsang M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovascular Research. 2015;107(4):487–98. DOI: 10.1093/cvr/cvv190

24. Singh A, Ramesh S, Cibi DM, Yun LS, Li J, Li L et al. Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development. Cell Reports. 2016;15(7):1384–93. DOI: 10.1016/j.celrep.2016.04.027

25. Wada AM, Smith TK, Osler ME, Reese DE, Bader DM. Epicardial/Mesothelial Cell Line Retains Vasculogenic Potential of Embryonic Epicardium. Circulation Research. 2003;92(5):525–31. DOI: 10.1161/01.RES.0000060484.11032.0B

26. Lu J, Landerholm TE, Wei JS, Dong X-R, Wu S-P, Liu X et al. Coronary Smooth Muscle Differentiation from Proepicardial Cells Requires RhoA-Mediated Actin Reorganization and p160 Rho-Kinase Activity. Developmental Biology. 2001;240(2):404–18. DOI: 10.1006/dbio.2001.0403

27. Merki E, Zamora M, Raya A, Kawakami Y, Wang J, Zhang X et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proceedings of the National Academy of Sciences of the USA. 2005;102(51):18455–60. DOI: 10.1073/pnas.0504343102

28. Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes & Development. 2006;20(12):1651–66. DOI: 10.1101/gad.1411406

29. Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Developmental Biology. 2001;234(1):204–15. DOI: 10.1006/dbio.2001.0254

30. Vega-Hernandez M, Kovacs A, De Langhe S, Ornitz DM. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development. 2011;138(15):3331–40. DOI: 10.1242/dev.064410

31. Zamora M, Manner J, Ruiz-Lozano P. Epicardium-derived progenitor cells require -catenin for coronary artery formation. Proceedings of the National Academy of Sciences USA. 2007;104(46):18109–14. DOI: 10.1073/pnas.0702415104

32. Austin AF, Compton LA, Love JD, Brown CB, Barnett JV. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFβ. Developmental Dynamics. 2008;237(2):366–76. DOI: 10.1002/dvdy.21421

33. Tao J, Barnett J, Watanabe M, Ramírez-Bergeron D. Hypoxia Supports Epicardial Cell Differentiation in Vascular Smooth Muscle Cells through the Activation of the TGFβ Pathway. Journal of Cardiovascular Development and Disease. 2018;5(2):19. DOI: 10.3390/jcdd5020019

34. Tao J, Doughman Y, Yang K, Ramirez-Bergeron D, Watanabe M. Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium. Developmental Biology. 2013;376(2):136–49. DOI: 10.1016/j.ydbio.2013.01.026

35. Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Ratner E.I., Molokotina Yu.D., Parfenova E.V. Characteristics of angiogenic properties of c-Kit+cells of the myocardium. Genes and Cells. 2018;13(3):82–8. DOI: 10.23868/201811038

36. Kindrick JD, Mole DR. Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect. International Journal of Molecular Sciences. 2020;21(21):8320. DOI: 10.3390/ijms21218320

37. Krohn KA, Link JM, Mason RP. Molecular Imaging of Hypoxia. Journal of Nuclear Medicine. 2008;49(Suppl 2):129S-148S. DOI: 10.2967/jnumed.107.045914

38. Nordsmark M, Loncaster J, Aquino-Parsons C, Chou S-C, Ladekarl M, Havsteen H et al. Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiotherapy and Oncology. 2003;67(1):35–44. DOI: 10.1016/S0167-8140(03)00010-0

39. Sanada F, Kim J, Czarna A, Chan NY-K, Signore S, Ogórek B et al. c-Kit–Positive Cardiac Stem Cells Nested in Hypoxic Niches Are Activated by Stem Cell Factor Reversing the Aging Myopathy. Circulation Research. 2014;114(1):41–55. DOI: 10.1161/CIRCRESAHA.114.302500

40. Romano N, Ceci M. The face of epicardial and endocardial derived cells in zebrafish. Experimental Cell Research. 2018;369(1):166–75. DOI: 10.1016/j.yexcr.2018.05.022

41. Dergilev K.V., Rubina K.A., Parfenova E.V. Resident cardiac stem cells. Kardiologiia. 2011;51(4):84–92.

42. Iancu CB, Iancu D, Renţea I, Hostiuc S, Dermengiu D, Rusu MC. Molecular signatures of cardiac stem cells. Romanian Journal of Morphology and Embryology. 2015;56(4):1255–62. PMID: 26743269

43. Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I et al. Heterogeneity of Adult Cardiac Stem Cells. P. 141-178. DOI: 10.1007/978-3-030-24108-7_8. In: Stem Cells Heterogeneity in Different Organs. [ISBN: 978-3-030-24107-0, 978-3-030-24108-7. Series Title: Advances in Experimental Medicine and Biology]. Birbrair A, editor -Cham: Springer International Publishing;2019.

44. Samal R, Sappa PK, Gesell Salazar M, Wenzel K, Reinke Y, Völker U et al. Global secretome analysis of resident cardiac progenitor cells from wild-type and transgenic heart failure mice: Why ambience matters. Journal of Cellular Physiology. 2019;234(7):10111–22. DOI: 10.1002/jcp.27677

45. Balakrishnan S, Hartman CW, Grinnan GL, Bartel AG, Crisler C, Brickman RD. Pericardial fluid gas analysis in hemorrhagic pericardial tamponade. The Annals of Thoracic Surgery. 1979;27(1):55–8. DOI: 10.1016/s0003-4975(10)62971-2

46. de Laforcade AM, Freeman LM, Rozanski EA, Rush JE. Biochemical analysis of pericardial fluid and whole blood in dogs with pericardial effusion. Journal of Veterinary Internal Medicine. 2005;19(6):833–6. PMID: 16355677

47. Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. Journal of Experimental & Clinical Cancer Research. 2020;39(1):224. DOI: 10.1186/s13046-020-01733-5

48. Higgins DF, Kimura K, Iwano M, Haase VH. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle. 2008;7(9):1128–32. DOI: 10.4161/cc.7.9.5804

49. Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Traktuev D.O., Gorelova A.V., Zubko A.V. et al. Intramyocardial Injection of Plasmid Encoding Platelet Growth Factor Increases Epicardial-Mediated Post Infarction Myocardial Vascularization (Experimental Study). General Reanimatology. 2020;16(6):54–64. DOI: 10.15360/1813-9779-2020-6-54-64

50. Wei K, Serpooshan V, Hurtado C, Diez-Cuñado M, Zhao M, Maruyama S et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85. DOI: 10.1038/nature15372

51. Widera C, Horn-Wichmann R, Kempf T, Bethmann K, Fiedler B, Sharma S et al. Circulating Concentrations of Follistatin-Like 1 in Healthy Individuals and Patients with Acute Coronary Syndrome as Assessed by an Immunoluminometric Sandwich Assay. Clinical Chemistry. 2009;55(10):1794–800. DOI: 10.1373/clinchem.2009.129411


Review

For citations:


Dergilev K.V., Tsokolaeva Z.I., Vasilets Yu.D., Beloglazova I.B., Kulbitsky B.N., Parfyonova Ye.V. Hypoxia – as a Possible Regulator of the Activity of Epicardial Mesothelial Cells After Myocardial Infarction. Kardiologiia. 2021;61(6):59-68. https://doi.org/10.18087/cardio.2021.6.n1476

Views: 1377


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)