ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Cardiac Involvement in COVID-19

https://doi.org/10.18087/cardio.2021.4.n1408

Abstract

The novel coronavirus infection, COVID-19, is a highly contagious viral disease associated with acute, severe respiratory syndrome, which is based on the development of pronounced thrombo-inflammatory syndrome. As the number of patients with COVID-19 increased, heart damage has been reported, especially in patients with severe and critical COVID-19. This review describes the role of angiotensin-converting enzyme 2 receptor in the regulation of viral entry, the variety of damages to the heart and coronary arteries, and the importance of arterial hypertension and of the use of renin-angiotensin-aldosterone system inhibitors in the prognosis of patients with COVID-19.

About the Author

A. B. Sugraliyev
Kazakh National Medical University, Almaty, Kazakhstan
Kazakhstan

head of department



References

1. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiology. 2020;5(7):802–10. DOI: 10.1001/jamacardio.2020.0950

2. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 2019;17(3):181–92. DOI: 10.1038/s41579-018-0118-9

3. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. DOI: 10.1038/s41586-020-2012-7

4. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN et al. Aerosol and Surface Stability of SARSCoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine. 2020;382(16):1564–7. DOI: 10.1056/NEJMc2004973

5. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases. 2020;92:214–7. DOI: 10.1016/j.ijid.2020.01.050

6. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research. 2020;7(1):11. DOI: 10.1186/s40779-020-00240-0

7. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences. 2020;63(3):364–74. DOI: 10.1007/s11427-020-1643-8

8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–62. DOI: 10.1016/S0140-6736(20)30566-3

9. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-292.e6. DOI: 10.1016/j.cell.2020.02.058

10. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8. DOI: 10.1126/science.abb2762

11. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M et al. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiological Reviews. 2018;98(1):505–53. DOI: 10.1152/physrev.00023.2016

12. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4. DOI: 10.1038/nature02145

13. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. DOI: 10.1016/j.cell.2020.02.052

14. Wu Y. Compensation of ACE2 Function for Possible Clinical Management of 2019-nCoV-Induced Acute Lung Injury. Virologica Sinica. 2020;35(3):256–8. DOI: 10.1007/s12250-020-00205-6

15. Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology. 2004;203(2):631–7. DOI: 10.1002/path.1570

16. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases. 2020;20(5):533–4. DOI: 10.1016/S1473-3099(20)30120-1

17. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141(20):1648–55. DOI: 10.1161/CIRCULATIONAHA.120.046941

18. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Critical Care. 2020;24(1):108. DOI: 10.1186/s13054-020-2833-7

19. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) Requiring Invasive Mechanical Ventilation. Obesity. 2020;28(7):1195–9. DOI: 10.1002/oby.22831

20. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. Journal of Allergy and Clinical Immunology. 2020;146(1):110–8. DOI: 10.1016/j.jaci.2020.04.006

21. Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–8. DOI: 10.2337/dc20-0576

22. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Internal Medicine. 2020;180(7):934–43. DOI: 10.1001/jamainternmed.2020.0994

23. Shibata S, Arima H, Asayama K, Hoshide S, Ichihara A, Ishimitsu T et al. Hypertension and related diseases in the era of COVID-19: areport from the Japanese Society of Hypertension Task Force on COVID-19. Hypertension Research. 2020;43(10):1028–46. DOI: 10.1038/s41440-020-0515-0

24. Centers for Disease Control and Prevention. People at Increased Risk for Severe Illness. 2020. [Internet] Available at: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html

25. Williams B, Zhang Y. Hypertension, renin–angiotensin–aldosterone system inhibition, and COVID-19. The Lancet. 2020;395(10238):1671–3. DOI: 10.1016/S0140-6736(20)31131-4

26. Kuster GM, Pfister O, Burkard T, Zhou Q, Twerenbold R, Haaf P et al. SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? European Heart Journal. 2020;41(19):1801–3. DOI: 10.1093/eurheartj/ehaa235

27. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac AngiotensinConverting Enzyme 2. Circulation. 2005;111(20):2605–10. DOI: 10.1161/CIRCULATIONAHA.104.510461

28. Deshotels MR, Xia H, Sriramula S, Lazartigues E, Filipeanu CM. Angiotensin II Mediates Angiotensin Converting Enzyme Type 2 Internalization and Degradation Through an Angiotensin II Type I Receptor–Dependent Mechanism. Hypertension. 2014;64(6):1368–75. DOI: 10.1161/HYPERTENSIONAHA.114.03743

29. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine. 2020;382(17):1653–9. DOI: 10.1056/NEJMsr2005760

30. Danser AHJ, Epstein M, Batlle D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension. 2020;75(6):1382–5. DOI: 10.1161/HYPERTENSIONAHA.120.15082

31. Sun ML, Yang JM, Sun YP, Su GH. Inhibitors of RAS Might Be a Good Choice for the Therapy of COVID-19 Pneumonia. Zhonghua Jie He He Hu Xi Za Zhi = Zhonghua Jiehe He Huxi Zazhi = Chinese Journal of Tuberculosis and Respiratory Diseases. 2020;43(3):219–22. DOI: 10.3760/cma.j.issn.1001-0939.2020.03.016

32. de Abajo FJ, Rodríguez-Martín S, Lerma V, Mejía-Abril G, Aguilar M, García-Luque A et al. Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a casepopulation study. The Lancet. 2020;395(10238):1705–14. DOI: 10.1016/S0140-6736(20)31030-8

33. Li J, Wang X, Chen J, Zhang H, Deng A. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiology. 2020;5(7):825–30. DOI: 10.1001/jamacardio.2020.1624

34. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. New England Journal of Medicine. 2020;382(25):2431–40. DOI: 10.1056/NEJMoa2006923

35. Bean DM, Kraljevic Z, Searle T, Bendayan R, Kevin O, Pickles A et al. Angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers are not associated with severe COVID‐19 infection in a multi‐site UK acute hospital trust. European Journal of Heart Failure. 2020;22(6):967–74. DOI: 10.1002/ejhf.1924

36. Zhang P, Zhu L, Cai J, Lei F, Qin J-J, Xie J et al. Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circulation Research. 2020;126(12):1671–81. DOI: 10.1161/CIRCRESAHA.120.317134

37. American College of Cardiology. HFSA/ACC/AHA Statement Addresses Concerns Re: Using RAAS Antagonists in COVID-19. Av. at: https://www.acc.org/latest-in-cardiology/articles/2020/03/17/08/59/hfsa-acc-aha-statement-addresses-concerns-re-using-raas-antagonists-in-covid-19. 2020.

38. European Society of Cardiology. Position Statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers. 2020. [Internet] Available at: https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang

39. Shlyakho E.V., Konradi A.O., Arutyunov G.P., Arutyunov A.G., Bautin A.E., Boytsov S.A. et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(3):129–48. DOI: 10.15829/1560-4071-2020-3-3801

40. Lopes RD, Macedo AVS, de Barros e Silva PGM, Moll-Bernardes RJ, Feldman A, D’Andréa Saba Arruda G et al. Continuing versus suspending angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: Impact on adverse outcomes in hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-The BRACE CORONA Trial. American Heart Journal. 2020;226:49–59. DOI: 10.1016/j.ahj.2020.05.002

41. European Society of Cardiology. ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. Last updated on 10 June 2020. Av. at: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance.

42. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology. 2020;5(7):811–8. DOI: 10.1001/jamacardio.2020.1017

43. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020;17(5):259–60. DOI: 10.1038/s41569-020-0360-5

44. Cosyns B, Lochy S, Luchian ML, Gimelli A, Pontone G, Allard SD et al. The role of cardiovascular imaging for myocardial injury in hospitalized COVID-19 patients. European Heart Journal Cardiovascular Imaging. 2020;21(7):709–14. DOI: 10.1093/ehjci/jeaa136

45. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology. 2020;5(7):819–24. DOI: 10.1001/jamacardio.2020.1096

46. Yancy CW, Fonarow GC. Coronavirus Disease 2019 (COVID-19) and the Heart—Is Heart Failure the Next Chapter? JAMA Cardiology. 2020;5(11):1216–7. DOI: 10.1001/jamacardio.2020.3575

47. Shi S, Qin M, Cai Y, Liu T, Shen B, Yang F et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. European Heart Journal. 2020;41(22):2070–9. DOI: 10.1093/eurheartj/ehaa408

48. Toth E, Dancy L, Amin-Youssef G, Papachristidis A, Dworakowski R. Collateral implications of the COVID-19 pandemic: belated presentation of infective endocarditis in a young patient. European Heart Journal. 2020;41(45):4365. DOI: 10.1093/eurheartj/ehaa633

49. Hua A, O’Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. European Heart Journal. 2020;41(22):2130. DOI: 10.1093/eurheartj/ehaa253

50. Kesici S, Aykan HH, Orhan D, Bayrakci B. Fulminant COVID-19-related myocarditis in an infant. European Heart Journal. 2020;41(31):3021. DOI: 10.1093/eurheartj/ehaa515

51. Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. European Heart Journal. 2020;41(19):1861–2. DOI: 10.1093/eurheartj/ehaa286

52. Solano-López J, Sánchez-Recalde A, Zamorano JL. SARS-CoV-2, a novel virus with an unusual cardiac feature: inverted takotsubo syndrome. European Heart Journal. 2020;41(32):3106. DOI: 10.1093/eurheartj/ehaa390

53. Meyer P, Degrauwe S, Van Delden C, Ghadri J-R, Templin C. Typical takotsubo syndrome triggered by SARS-CoV-2 infection. European Heart Journal. 2020;41(19):1860. DOI: 10.1093/eurheartj/ehaa306

54. Bonnet M, Champagnac A, Lantelme P, Harbaoui B. Endomyocardial biopsy findings in Kawasaki-like disease associated with SARS-CoV-2. European Heart Journal. 2020;41(39):3863–4. DOI: 10.1093/eurheartj/ehaa588

55. Shergill S, Davies J, Bloomfield J. Florid aortitis following SARSCoV-2 infection. European Heart Journal. 2020;41(44):4286. DOI: 10.1093/eurheartj/ehaa635

56. Wichmann D, Sperhake J-P, Lütgehetmann M, Steurer S, Edler C, Heinemann A et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Annals of Internal Medicine. 2020;173(4):268–77. DOI: 10.7326/M20-2003

57. Lax SF, Skok K, Zechner P, Kessler HH, Kaufmann N, Koelblinger C et al. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome: Results From a Prospective, Single-Center, Clinicopathologic Case Series. Annals of Internal Medicine. 2020;173(5):350–61. DOI: 10.7326/M20-2566

58. Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Critical Care and Resuscitation. 2020;22(2):95–7. PMID: 32294809

59. Sugraliyev A.B., Cirillo P. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome. Prevention of venous thromboembolism in patients with COVID-19. Medicine (Almaty). 2020;3–4:2–7.

60. Hu D, Liu K, Li B, Hu Z. Large intracardiac thrombus in a COVID-19 patient treated with prolonged extracorporeal membrane oxygenation implantation. European Heart Journal. 2020;41(32):3104–5. DOI: 10.1093/eurheartj/ehaa524

61. Ueki Y, Otsuka T, Windecker S, Räber L. ST-elevation myocardial infarction and pulmonary embolism in a patient with COVID-19 acute respiratory distress syndrome. European Heart Journal. 2020;41(22):2134. DOI: 10.1093/eurheartj/ehaa399

62. Dominguez-Erquicia P, Dobarro D, Raposeiras-Roubín S, BastosFernandez G, Iñiguez-Romo A. Multivessel coronary thrombosis in a patient with COVID-19 pneumonia. European Heart Journal. 2020;41(22):2132. DOI: 10.1093/eurheartj/ehaa393

63. Fernandez Gasso L, Maneiro Melon NM, Sarnago Cebada F, Solis J, Garcia Tejada J. Multivessel spontaneous coronary artery dissection presenting in a patient with severe acute SARS-CoV-2 respiratory infection. European Heart Journal. 2020;41(32):3100–1. DOI: 10.1093/eurheartj/ehaa400

64. Dweck MR, Bularga A, Hahn RT, Bing R, Lee KK, Chapman AR et al. Global evaluation of echocardiography in patients with COVID-19. European Heart Journal Cardiovascular Imaging. 2020;21(9):949–58. DOI: 10.1093/ehjci/jeaa178

65. Skulstad H, Cosyns B, Popescu BA, Galderisi M, Salvo GD, Donal E et al. COVID-19 pandemic and cardiac imaging: EACVI recommendations on precautions, indications, prioritization, and protection for patients and healthcare personnel. European Heart Journal – Cardiovascular Imaging. 2020;21(6):592–8. DOI: 10.1093/ehjci/jeaa072

66. Linschoten M, Asselbergs FW. CAPACITY-COVID: a European Registry to determine the role of cardiovascular disease in the COVID-19 pandemic. European Heart Journal. 2020;41(19):1795–6. DOI: 10.1093/eurheartj/ehaa280

67. Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiology. 2020;5(11):1265–73. DOI: 10.1001/jamacardio.2020.3557


Review

For citations:


Sugraliyev A.B. Cardiac Involvement in COVID-19. Kardiologiia. 2021;61(4):15-23. (In Russ.) https://doi.org/10.18087/cardio.2021.4.n1408

Views: 2747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)