Correlations between clinical and laboratory findings and prognostically unfavorable CMR-based characteristics of acute ST-elevation myocardial infarction
https://doi.org/10.18087/cardio.2021.1.n1373
Abstract
Aim To evaluate factors associated with unfavorable predictive characteristics of ST-segment elevation acute myocardial infarction (STEMI) as per data of magnetic resonance imaging (MRI).
Material and methods The study included 52 patients with STEMI who underwent a primary percutaneous coronary intervention (pPCI). Contrast-enhanced cardiac MRI was performed for all patients on days 3-7. Delayed contrast-enhancement images were used for assessing infarct size, presence of microvascular obstruction (MVO) areas, and heterogeneity zones.
Results Multifactorial analysis showed that independent predictors of MVO were type 2 diabetes mellitus (DM) (relative risk (RR) 1.9, confidence interval (CI): 1.1–3.26, р=0.012), increased levels of brain natriuretic peptide (BNP) (RR 2.04, CI: 1.39–2.99, р=0.004) and creatine kinase (CK) (RR 2.06, CI: 0.52–0.80, р=0.02), and infarct size (IS) (RR 2.81; CI: 1.38–5.72, р=0.0004). Construction of ROC curves provided the quantitative values of study indexes, at which the risk of MVO increased. For BNP, this value was ≥276 pg/ml (sensitivity, 95.7 %; specificity, 37.9 %); for CK ≥160 U/l (sensitivity, 74.1 %; specificity, 61.9 %); and for IS ≥18.8 % (sensitivity, 79.3 %; specificity, 69.6 %). Correlation analysis of risk factors for increased size of the heterogeneity zone showed significant correlations of the heterogeneity zone size with older age of patients (r=0.544, р<0.0001), higher concentrations of BNP (r=0.612, р<0.0001), CK (r=0.3, 95 % CI: 0.02–0.5, р=0.03), and C-reactive protein (CRP) (r=0.59, CI: 0.3–0.7, р=0.0001). Increased levels of CK (r=0.53, 95 % CI: 0.29–0.70, р=0.0001) and BNP (r=0.55, 95 % CI: 0.28–0.70, p=0.0003) significantly correlated with increased IS.
Conclusion Risk of MVO formation as per MRI data increased in the presence of type 2 DM and IS ≥18.8 % (р<0.05). Formation of MVO in patients with STEMI was associated with increased levels of BNP ≥276 pg/ml and CK ≥160 U/l (р<0.05). Increased levels of BNP, CK, and CRP were associated with a larger size of heterogeneity zone according to data of the correlation analysis. A larger heterogeneity zone was more typical for older patients. Increased levels of CK and BNP were also associated with larger IS. The correlation analysis did not show any significant interactions between the size of heterogeneity zone, IS, and MVO size (р>0.05).
Keywords
About the Authors
M. A. TerenichevaRussian Federation
postgraduate student, cardiologist of the department of urgent cardiology
R. M. Shakhnovich
Russian Federation
Cand.Sc. endovascular surgeon, department of the roentgenendovascular diagnostic and treatment methods
O. V. Stukalova
Russian Federation
Cand.Sc., radiologist, department of tomography
D. V. Pevzner
Russian Federation
Cand.Sc, the head of the intensive care unit, of the department of urgent cardiology
G. K. Arutyunyan
Russian Federation
Doctor of medical science, cardiologist of the department of urgent cardiology
A. Yu. Demchenkova
Russian Federation
Academician of the Russian Academy of Sciences, doctor of medicine, professor,
the head of the department of tomography (Federal State Budget Organization National Medical Research Center of Cardiology)the head of the department of radiation diagnostic and treatment (I.M. Sechenov First Moscow State Medical University (Sechenov University). Moscow, Russia)I. N. Merkulova
Russian Federation
Cand.Sc, radiologist, department of tomography
S. K. Ternovoy
Russian Federation
References
1.
2. Doost Hosseiny A, Moloi S, Chandrasekhar J, Farshid A. Mortality pattern and cause of death in a long-term follow-up of patients with STEMI treated with primary PCI. Open Heart. 2016;3(1):e000405. DOI: 10.1136/openhrt-2016-000405
3. Bulluck H, Dharmakumar R, Arai AE, Berry C, Hausenloy DJ. Cardiovascular Magnetic Resonance in Acute ST-Segment–Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation. 2018;137(18):1949–64. DOI: 10.1161/CIRCULATIONAHA.117.030693
4. Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM et al. Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials. Journal of the American College of Cardiology. 2016;67(14):1674–83. DOI: 10.1016/j.jacc.2016.01.069
5. Eitel I, de Waha S, Wöhrle J, Fuernau G, Lurz P, Pauschinger M et al. Comprehensive Prognosis Assessment by CMR Imaging After ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology. 2014;64(12):1217–26. DOI: 10.1016/j.jacc.2014.06.1194
6. Kazbanov IV, ten Tusscher KHWJ, Panfilov AV. Effects of Heterogeneous Diffuse Fibrosis on Arrhythmia Dynamics and Mechanism. Scientific Reports. 2016;6(1):20835. DOI: 10.1038/srep20835
7. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA et al. Fourth universal definition of myocardial infarction (2018). European Heart Journal. 2019;40(3):237–69. DOI: 10.1093/eurheartj/ehy462
8. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal. 2018;39(2):119– 77. DOI: 10.1093/eurheartj/ehx393
9. Costello BT, Stub D, Hare J, Ellims AH, Wang X, Smith K et al. Comparison of Magnetic Resonance Analysis of Myocardial Scarring With Biomarker Release Following S-T Elevation Myocardial Infarction. Heart, Lung and Circulation. 2019;28(3):397–405. DOI: 10.1016/j.hlc.2018.02.007
10. Bulluck H, Hammond-Haley M, Weinmann S, Martinez-Macias R, Hausenloy DJ. Myocardial Infarct Size by CMR in Clinical Cardioprotection Studies: Insights From Randomized Controlled Trials. JACC: Cardiovascular Imaging. 2017;10(3):230–40. DOI: 10.1016/j.jcmg.2017.01.008
11. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen E-L, Simonetti O et al. Relationship of MRI Delayed Contrast Enhancement to Irreversible Injury, Infarct Age, and Contractile Function. Circulation. 1999;100(19):1992–2002. DOI: 10.1161/01.CIR.100.19.1992
12. Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C et al. Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials. Journal of the American College of Cardiology. 2019;74(2):238–56. DOI: 10.1016/j.jacc.2019.05.024
13. Stukalova O.V., Meladze N.V., Butorova E.A., Pevzner D.V., Ternovoy S.K. Cardiac MRI in patient with isolated myocardial infarction of the right ventricle. Russian Electronic Journal of Radiology. 2018;8(3):268–72.
14. Klem I, Weinsaft JW, Bahnson TD, Hegland D, Kim HW, Hayes B et al. Assessment of Myocardial Scarring Improves Risk Stratification in Patients Evaluated for Cardiac Defibrillator Implantation. Journal of the American College of Cardiology. 2012;60(5):408–20. DOI: 10.1016/j.jacc.2012.02.070
15. Wu E, Ortiz JT, Tejedor P, Lee DC, Bucciarelli-Ducci C, Kansal P et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94(6):730–6. DOI: 10.1136/hrt.2007.122622
16. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 1977;56(5):786–94. DOI: 10.1161/01.CIR.56.5.786
17. Stensjøen AL, Hommerstad A, Halvorsen S, Arheden H, Engblom H, Erlinge D et al. Worst lead ST deviation and resolution of ST elevation at one hour for prediction of myocardial salvage, infarct size, and microvascular obstruction in patients with ST‐elevation myocardial infarction treated with primary percutaneous coronary intervention. Annals of Noninvasive Electrocardiology. 2020;25(6):e12784. DOI: 10.1111/anec.12784
18. Clinical Methods: The History, Physical, and Laboratory Examinations. Chapter 32. Cabaniss CD. Creatine Kinase. Walker HK, Hall WD, Hurst JW, editors -Boston: Butterworths;1990. - 1087 p. ISBN 978-0-409-90077-4
19. Wright GA, Struthers AD. Natriuretic peptides as a prognostic marker and therapeutic target in heart failure. Heart. 2006;92(2):149–51. DOI: 10.1136/hrt.2003.018325
20. Kleczyński P, Legutko J, Rakowski T, Dziewierz A, Siudak Z, Zdzienicka J et al. Predictive Utility of NT-pro BNP for Infarct Size and Left Ventricle Function after Acute Myocardial Infarction in Long-Term Follow-Up. Disease Markers. 2013;34(3):199–204. DOI: 10.1155/2013/981968
21. Krug A, De Rochemont WDM, Korb G. Blood Supply of the Myocardium after Temporary Coronary Occlusion. Circulation Research. 1966;19(1):57–62. DOI: 10.1161/01.RES.19.1.57
22. Abbas A, Matthews GH, Brown IW, Shambrook JS, Peebles CR, Harden SP. Cardiac MR assessment of microvascular obstruction. The British Journal of Radiology. 2015;88(1047):20140470. DOI: 10.1259/bjr.20140470
23. Schwartz BG, Kloner RA. Coronary no reflow. Journal of Molecular and Cellular Cardiology. 2012;52(4):873–82. DOI: 10.1016/j.yjmcc.2011.06.009
24. Wu KC. CMR of microvascular obstruction and hemorrhage in myocardial infarction. Journal of Cardiovascular Magnetic Resonance. 2012;14(1):68. DOI: 10.1186/1532-429X-14-68
25. Hamirani YS, Wong A, Kramer CM, Salerno M. Effect of Microvascular Obstruction and Intramyocardial Hemorrhage by CMR on LV Remodeling and Outcomes After Myocardial Infarction: a systematic review and meta-analysis. JACC: Cardiovascular Imaging. 2014;7(9):940–52. DOI: 10.1016/j.jcmg.2014.06.012
26. Van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A et al. Prognostic Value of Microvascular Obstruction and Infarct Size, as Measured by CMR in STEMI Patients. JACC: Cardiovascular Imaging. 2014;7(9):930–9. DOI: 10.1016/j.jcmg.2014.05.010
27. Niccoli G, Montone RA, Ibanez B, Thiele H, Crea F, Heusch G et al. Optimized Treatment of ST-Elevation Myocardial Infarction. Circulation Research. 2019;125(2):245–58. DOI: 10.1161/CIRCRESAHA.119.315344
28. Galea N, Dacquino GM, Ammendola RM, Coco S, Agati L, De Luca L et al. Microvascular obstruction extent predicts major adverse cardiovascular events in patients with acute myocardial infarction and preserved ejection fraction. European Radiology. 2019;29(5):2369–77. DOI: 10.1007/s00330-018-5895-z
29. Ndrepepa G, Tiroch K, Fusaro M, Keta D, Seyfarth M, Byrne RA et al. 5-Year Prognostic Value of No-Reflow Phenomenon After Percutaneous Coronary Intervention in Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology. 2010;55(21):2383–9. DOI: 10.1016/j.jacc.2009.12.054
30. Erkol A, Pala S, Oduncu V, Turan B, Karabay CY, Akgün T et al. Predictors of Microvascular Obstruction Assessed by the Index of Microcirculatory Resistance Following Primary Percutaneous Coronary Intervention for Acute ST-Elevation Myocardial Infarction. Journal of the American College of Cardiology. 2013;62(18):C3. DOI: 10.1016/j.jacc.2013.08.018
31. Breithardt G, Borggrefe M, Martinez-Rubio A, Budde T. Pathophysiological mechanisms of ventricular tachyarrhythmias. European Heart Journal. 1989;10(Suppl E):9–18. DOI: 10.1093/eurheartj/10.suppl_E.9
32. Castellanos A, Lemberg L, Arcebal AG. Mechanisms of Slow Ventricular Tachycardias in Acute Myocardial Infarction. Diseases of the Chest. 1969;56(6):470–6. DOI: 10.1378/chest.56.6.470
33. Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK et al. Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction. Circulation. 2007;115(15):2006– 14. DOI: 10.1161/CIRCULATIONAHA.106.653568
34. Robbers LFHJ, Delewi R, Nijveldt R, Hirsch A, Beek AM, Kemme MJB et al. Myocardial infarct heterogeneity assessment by late gadolinium enhancement cardiovascular magnetic resonance imaging shows predictive value for ventricular arrhythmia development after acute myocardial infarction. European Heart Journal - Cardiovascular Imaging. 2013;14(12):1150–8. DOI: 10.1093/ehjci/jet111
35. Wu T-J, Ong JJC, Hwang C, Lee JJ, Fishbein MC, Czer L et al. Characteristics of wave fronts during ventricular fibrillation in human hearts with dilated cardiomyopathy: role of increased fibrosis in the generation of reentry. Journal of the American College of Cardiology. 1998;32(1):187–96. DOI: 10.1016/S0735-1097(98)00184-3
36. Gucuk Ipek E, Nazarian S. Cardiac magnetic resonance for prediction of arrhythmogenic areas. Trends in Cardiovascular Medicine. 2015;25(7):635–42. DOI: 10.1016/j.tcm.2015.02.012
37. Franco A, Javidi S, Ruehm SG. Delayed Myocardial Enhancement in Cardiac Magnetic Resonance Imaging. Journal of Radiology Case Reports. 2015;9(6):6–18. DOI: 10.3941/jrcr.v9i6.2328
38. Josephson ME, Horowitz LN, Farshidi A, Kastor JA. Recurrent sustained ventricular tachycardia. 1. Mechanisms. Circulation. 1978;57(3):431–40. DOI: 10.1161/01.CIR.57.3.431
39. Josephson ME, Horowitz LN, Farshidi A. Continuous local electrical activity. A mechanism of recurrent ventricular tachycardia. Circulation. 1978;57(4):659–65. DOI: 10.1161/01.CIR.57.4.659
40. De Bakker JM, van Capelle FJ, Janse MJ, Wilde AA, Coronel R, Becker AE et al. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation. 1988;77(3):589–606. DOI: 10.1161/01.CIR.77.3.589
41. Roes SD, Borleffs CJW, van der Geest RJ, Westenberg JJM, Marsan NA, Kaandorp TAM et al. Infarct Tissue Heterogeneity Assessed With Contrast-Enhanced MRI Predicts Spontaneous Ventricular Arrhythmia in Patients With Ischemic Cardiomyopathy and Implantable Cardioverter-Defibrillator. Circulation: Cardiovascular Imaging. 2009;2(3):183–90. DOI: 10.1161/CIRCIMAGING.108.826529
42. Wu KC, Gerstenblith G, Guallar E, Marine JE, Dalal D, Cheng A et al. Combined Cardiac Magnetic Resonance Imaging and C-Reactive Protein Levels Identify a Cohort at Low Risk for Defibrillator Firings and Death. Circulation: Cardiovascular Imaging. 2012;5(2):178–86. DOI: 10.1161/CIRCIMAGING.111.968024
43. Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM et al. Myocardial Fibrosis Predicts Appropriate Device Therapy in Patients With Implantable Cardioverter-Defibrillators for Primary Prevention of Sudden Cardiac Death. Journal of the American College of Cardiology. 2011;57(7):821–8. DOI: 10.1016/j.jacc.2010.06.062
44. Kitzman DW, Scholz DG, Hagen PT, Ilstrup DM, Edwards WD. AgeRelated Changes in Normal Human Hearts During the First 10 Decades of Life. Part II (Maturity): A Quantitative Anatomic Study of 765 Specimens From Subjects 20 to 99 Years Old. Mayo Clinic Proceedings. 1988;63(2):137–46. DOI: 10.1016/S0025-6196(12)64946-5
45. Blangy H, Sadoul N, Dousset B, Radauceanu A, Fay R, Aliot E et al. Serum BNP, hs-C-reactive protein, procollagen to assess the risk of ventricular tachycardia in ICD recipients after myocardial infarction. Europace. 2007;9(9):724–9. DOI: 10.1093/europace/eum102
46. Biasucci LM. C reactive protein is associated with malignant ventricular arrhythmias in patients with ischaemia with implantable cardioverter-defibrillator. Heart. 2006;92(8):1147–8. DOI: 10.1136/hrt.2005.065771
Review
For citations:
Terenicheva M.A., Shakhnovich R.M., Stukalova O.V., Pevzner D.V., Arutyunyan G.K., Demchenkova A.Yu., Merkulova I.N., Ternovoy S.K. Correlations between clinical and laboratory findings and prognostically unfavorable CMR-based characteristics of acute ST-elevation myocardial infarction. Kardiologiia. 2021;61(1):44-51. https://doi.org/10.18087/cardio.2021.1.n1373