ВАЖНО! Правила приравнивания журналов, входящих в международные базы данных к журналам перечня ВАК.
Ответ на официальный запрос в ВАК журнала Кардиология.

Preview

Kardiologiia

Advanced search

Proactive anti-inflammatory and anticoagulant therapy in the treatment of advanced stages of novel coronavirus infection (COVID-19). Case Series and Study Design: COLchicine versus ruxolitinib and secukinumab in open prospective randomIzed trial (COLORIT)

https://doi.org/10.18087/cardio.2020.9.n1338

Abstract

The article is devoted to the treatment of the new coronavirus infection (COVID-19) in the advanced stages of the disease. The types of response of the immune system to the viral load of SARS-CoV-2 with the start of the inflammation process are considered. The situation is analyzed in detail in which the growing autoimmune inflammation (up to the development of a "cytokine storm") affects not only the pulmonary parenchyma, but also the endothelium of the small vessels of the lungs. Simultaneous damage to the alveoli and microthrombosis of the pulmonary vessels are accompanied by a progressive impairment of gas exchange, the development of acute respiratory distress syndrome, the treatment of which, even with the use of invasive ventilation, is ineffective and does not really change the prognosis of patients with COVID-19. In order to interrupt the pathological process at the earliest stages of the disease, the necessity of proactive anti-inflammatory therapy in combination with active anticoagulation treatment is substantiated. The results of the first randomized studies on the use of inhibitors of pro-inflammatory cytokines and chemokines (interleukin-6 (tocilizumab), interleukin-17 (secukinumab), Janus kinase blockers, through which the signal is transmitted to cells (ruxolitinib)), which have potential in the early treatment of COVID- 19. The use of a well-known anti-inflammatory drug colchicine (which is used for gout treatment) in patients with COVID-19 is considered. The design of the original COLORIT comparative study on the use of colchicine, ruxolitinib and secukinumab in the treatment of COVID-19 is presented. Clinical series presented, illustrated early anti-inflammatory therapy together with anticoagulants in patients with COVID-19 and the dangers associated with refusing to initiate such therapy on time.

About the Authors

V. Yu. Mareev
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Chief Researcher Medical Research and Education Center of Moscow State University M.V. Lomonosova, Moscow, Russia


Ya. A. Orlova
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Head of the Department of Age-Associated Diseases Medical Research Center of Moscow State University M.V. Lomonosova


E. P. Pavlikova
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Deputy Director Clinical Work, Chief Physician Medical Research and Education Center of Moscow State University M.V. Lomonosova


Z. A. Akopyan
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Deputy Director of the Moscow State University


S. T. Matskeplishvili
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation
Deputy Director for Research, Cardiologist Medical Research and Education Center of Moscow State University M.V. Lomonosova


A. G. Plisyk
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Senior Researcher


E. M. Seredenina
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Head of the Department of Therapy, Senior Researcher


A. V. Potapenko
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Head of the Admissions Department, Senior Researcher


P. S. Malakhov
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation
Head of the Department of Anesthesiology and Resuscitation, ISRC, Moscow State University named after M.V. Lomonosov


L. M. Samokhodskaya
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Head of the Laboratory Diagnostics Department Medical Research and Education Center of Moscow State University M.V. Lomonosova


Е. А. Mershina
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Head Department of X-ray diagnostics, CT and MRI, radiologist Medical Scientific and Educational Center of Moscow State University M.V. Lomonosova


V. E. Sinitsyn
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Head of the Department of Radiation Diagnostics Medical Research and Educational Center of Moscow State University M.V. Lomonosova


D. A. Asratyan
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation
Head of the Department of Traumatology, Associate Professor


E. A. Zhdanova
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
specialist in internal medicine of the specialized care department of the moscow state university


Yu. V. Mareev
National Medical Research Centre for Therapy and Preventive Medicine, Moscow, Russia Robertson Centre for Biostatistics, Glasgow, Great Britain
Russian Federation
Senior Researcher


Yu. L. Begrambekova
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Leading Researcher Medical Research and Education Center of Moscow State University M.V. Lomonosova


E. A. Shatochina
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia
Russian Federation


А. А. Kamalov
Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russia
Russian Federation
Director Medical Research and Educational Center of Moscow State University M.V. Lomonosova


References

1. Pericàs JM, Hernandez-Meneses M, Sheahan TP, Quintana E, Ambrosioni J, Sandoval E et al. COVID-19: from epidemiology to treatment. European Heart Journal. 2020;41(22):2092–112. DOI: 10.1093/eurheartj/ehaa462

2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239. DOI: 10.1001/jama.2020.2648

3. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708–20. DOI: 10.1056/NEJMoa2002032

4. Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang S et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. International Journal of Infectious Diseases. 2020;94:81–7. DOI: 10.1016/j.ijid.2020.03.040

5. Gao C, Cai Y, Zhang K, Zhou L, Zhang Y, Zhang X et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. European Heart Journal. 2020;41(22):2058–66. DOI: 10.1093/eurheartj/ehaa433

6. De Spiegeleer A, Bronselaer A, Teo JT, Byttebier G, De Tré G, Belmans L et al. The Effects of ARBs, ACEis, and Statins on Clinical Outcomes of COVID-19 Infection Among Nursing Home Residents. Journal of the American Medical Directors Association. 2020;21(7):909- 914.e2. DOI: 10.1016/j.jamda.2020.06.018

7. Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. Journal of Diabetes Science and Technology. 2020;14(4):813–21. DOI: 10.1177/1932296820924469

8. Mareev V.Yu., Orlova Ya.A., Pavlikova E.P., Matskeplishvili S.T., Akopyan Zh.A., Plisyk A.G. et al. Combination therapy at an early stage of the novel coronavirus infection (COVID-19). Case series and design of the clinical trial “BromhexIne and Spironolactone for CoronаvirUs Infection requiring hospiTalization (BISCUIT)”. Kardiologiia. 2020;60(8):4– 15. DOI: 10.18087/cardio.2020.8.n1307

9. Muus C, Luecken MD, Eraslan G, Waghray A, Heimberg G, Sikkema L et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. Bioinformatics. 2020. Av. at: http://biorxiv.org/lookup/doi/10.1101/2020.04.19.049254.

10. Zayratyants O.V., Samsonova M.V., Mikhaleva L.M., Chernyaev A.L., Mishnev O.D., Krupnov N.M. et al. Pathological anatomy of COVID-19: Atlas. -M.: GBU “NIIOZMM DZM”; 2020. - 140p. ISBN 978-5-907251-57-1

11. Ruan Q, Yang K, Wang W, Jiang L, Song J. Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020;46(6):1294–7. DOI: 10.1007/s00134-020-06028-z

12. Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. The Lancet. 2020;396(10247):320–32. DOI: 10.1016/S0140-6736(20)31305-2

13. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: Glossary of Terms for Thoracic Imaging. Radiology. 2008;246(3):697–722. DOI: 10.1148/radiol.2462070712

14. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M et al. Cytokine release syndrome. Journal for ImmunoTherapy of Cancer. 2018;6(1):56. DOI: 10.1186/s40425- 018-0343-9

15. Wang J-Y, Chang S-Y, Huang Y-W, Chang S-C. Serology-positive but minimally symptomatic COVID-19 may still cause lung injury and lung function impairment. The International Journal of Tuberculosis and Lung Disease. 2020;24(6):568–9. DOI: 10.5588/ijtld.20.0197

16. Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. International Journal of Antimicrobial Agents. 2020;55(5):105954. DOI: 10.1016/j.ijantimicag.2020.105954

17. Vernadsky R.Yu., Medvedeva A.A., Garbukov E.Yu., Sinilkin I.G., Bragina O.D., Zelchan R.V. et al. Single-photon emission computed tomography with 99mTc-1-thio-d-glucose for metabolic breast cancer imaging. Russian Electronic Journal of Radiology. 2019;9(4):82–96. DOI: 10.21569/2222-7415-2019-9-4-82-96

18. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020;8(4):420–2. DOI: 10.1016/S2213-2600(20)30076-X

19. Covid-19 treatment Protocol at MSU Medical center. Av. at: http://www.mc.msu.ru/protokol-mnoc.pdf. 2020.

20. The OpenSAFELY Collaborative, Williamson E, Walker AJ, Bhaskaran KJ, Bacon S, Bates C et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. Epidemiology. 2020. [Av. at: http://medrxiv.org/lookup/doi/10.1101/2020.05.06.20092999.] DOI: 10.1101/2020.05.06.20092999.

21. Guan W, Liang W, Zhao Y, Liang H, Chen Z, Li Y et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. European Respiratory Journal. 2020;55(5):2000547. DOI: 10.1183/13993003.00547-2020

22. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation. 2020;130(5):2620–9. DOI: 10.1172/JCI137244

23. Tan L, Kang X, Ji X, Li G, Wang Q, Li Y et al. Validation of Predictors of Disease Severity and Outcomes in COVID-19 Patients: A Descriptive and Retrospective Study. Med. 2020; S2666634020300040. [Epub ahead of print]. DOI: 10.1016/j.medj.2020.05.002

24. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases. 2020;20(4):425– 34. DOI: 10.1016/S1473-3099(20)30086-4

25. Mo X, Jian W, Su Z, Chen M, Peng H, Peng P et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. European Respiratory Journal. 2020;55(6):2001217. DOI: 10.1183/13993003.01217-2020

26. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052. DOI: 10.1001/jama.2020.6775

27. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. The Lancet. 2020;395(10239):1763–70. DOI: 10.1016/S0140-6736(20)31189-2

28. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Internal Medicine. 2020;e203539. [Epub ahead of print]. DOI: 10.1001/jamainternmed.2020.3539

29. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19–25. DOI: 10.1016/j.immuni.2020.06.017

30. Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Research in Cardiology. 2020;115(3):31. DOI: 10.1007/s00395-020-0791-5

31. Mohan V, Tauseen RA. Spontaneous pneumomediastinum in COVID-19. BMJ Case Reports. 2020;13(5):e236519. DOI: 10.1136/bcr2020-236519

32. Zhou C, Gao C, Xie Y, Xu M. COVID-19 with spontaneous pneumomediastinum. The Lancet Infectious Diseases. 2020;20(4):510. DOI: 10.1016/S1473-3099(20)30156-0

33. Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolino F et al. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020;8(5):695. DOI: 10.3390/microorganisms8050695

34. Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A et al. Myocardial localization of coronavirus in COVID‐19 cardiogenic shock. European Journal of Heart Failure. 2020;22(5):911–5. DOI: 10.1002/ejhf.1828

35. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chemical Neuroscience. 2020;11(7):995–8. DOI: 10.1021/acschemneuro.0c00122

36. Wunsch H. Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology. American Journal of Respiratory and Critical Care Medicine. 2020;202(1):1–4. DOI: 10.1164/rccm.202004-1385ED

37. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. Journal of Translational Medicine. 2020;18(1):206. DOI: 10.1186/s12967-020-02374-0

38. Imtiaz F, Shafique K, Mirza S, Ayoob Z, Vart P, Rao S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. International Archives of Medicine. 2012;5(1):2. DOI: 10.1186/1755-7682-5-2

39. Yang A-P, Liu J, Tao W, Li H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. International Immunopharmacology. 2020;84: 106504. [Epub ahead of print]. DOI: 10.1016/j.intimp.2020.106504

40. Zhang Y, Wu W, Du M, Luo W, Hou W, Shi Y et al. Neutrophil-to-Lymphocyte Ratio may Replace Chest Computed Tomography to Reflect the Degree of Lung Injury in Patients with Corona Virus Disease 2019 (COVID-19). Av. at: https://www.researchsquare.com/article/rs23201/v1. DOI: 10.21203/rs.3.rs-23201/v1.2020.

41. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX et al. Neutrophil-tolymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. Journal of Infection. 2020;81(1):e6–12. DOI: 10.1016/j.jinf.2020.04.002

42. Ullah W, Basyal B, Tariq S, Almas T, Saeed R, Roomi S et al. Lymphocyte-to-C-Reactive Protein Ratio: A Novel Predictor of Adverse Outcomes in COVID-19. Journal of Clinical Medicine Research. 2020;12(7):415–22. DOI: 10.14740/jocmr4227

43. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Journal of Medical Virology. 2020; [Epub ahead of print]. DOI: 10.1002/jmv.25819

44. Ministry of Health of Russian Federation. Temporary methodical recommendations. Medical rehabilitation for new coronavirus infection (COVID-19). Version 2 (31.07.2020). Av. at: https://стопкоронавирус.рф/ai/doc/461/attach/28052020_Preg_COVID-19_v1.pdf.

45. Kewan T, Covut F, Al–Jaghbeer MJ, Rose L, Gopalakrishna KV, Akbik B. Tocilizumab for treatment of patients with severe COVID–19: A retrospective cohort study. EClinicalMedicine. 2020;24: 100418. DOI: 10.1016/j.eclinm.2020.100418

46. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. The Lancet Rheumatology. 2020;2(8):e474–84. DOI: 10.1016/S2665-9913(20)30173-9

47. Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clinical Infectious Diseases. 2020; ciaa954. [Epub ahead of print]. DOI: 10.1093/cid/ciaa954

48. Antinori S, Bonazzetti C, Gubertini G, Capetti A, Pagani C, Morena V et al. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmunity Reviews. 2020;19(7):102564. DOI: 10.1016/j.autrev.2020.102564

49. Marfella R, Paolisso P, Sardu C, Bergamaschi L, D’Angelo EC, Barbieri M et al. Negative impact of hyperglycaemia on tocilizumab therapy in Covid-19 patients. Diabetes & Metabolism. 2020;S1262363620300823. [Epub ahead of print]. DOI: 10.1016/j.diabet.2020.05.005

50. Roche provides an update on the phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID-19 associated pneumonia. [Интернет] Available at: https://www.roche.com/investors/updates/inv-update-2020-07-29.htm

51. Parodi E, O’Donnell C. Tocilizumab Fails to Help COVID-19 Patients in Italian Study. The Rheumatologist. 2020; [Av. at: https://www.therheumatologist.org/article/tocilizumab-fails-to-help-covid-19-patients-in-italian-study/]

52. Roche HL. A Study to Evaluate the Efficacy and Safety of Remdesivir Plus Tocilizumab Compared with Remdesivir Plus Placebo in Hospitalized Participants With Severe COVID-19 Pneumonia (REMDACTA). ClinicalTrials.gov Identifier: NCT04409262. [Интернет] Available at: https://clinicaltrials.gov/ct2/show/NCT04409262

53. Hoffmann-La Roche. A Phase-II, Open-Label, Randomized, Multicenter Study to Investigate the Pharmacodynamics, Pharmacokinetics, Safety, and Efficacy of 8 mg/kg or 4mg/kg Intravenous Tocilizumab in Patients with Moderate to Severe COVID-19 Pneumonia (MARIPOSA). ClinicalTrials.gov Identifier: NCT04363736. Av. at: https://clinicaltrials.gov/ct2/show/NCT04363736. 2020 г.

54. Genentech, Inc. A Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Efficacy and Safety of Tocilizumab in Hospitalized Patients With COVID-19 Pneumonia. ClinicalTrials.gov Identifier: NCT04372186. Av. at: https://clinicaltrials.gov/ct2/show/NCT04372186. 2020 г.

55. Mareev V.Yu., Orlova Ya.A., Pavlikova E.P., Matskeplishvili S.T., Krasnova T.N., Malahov P.S. et al. Steroid pulse -therapy in patients with coronAvirus Pneumonia (COVID-19), sYstemic inFlammation And Risk of vEnous thRombosis and thromboembolism (WAYFARER Study). Kardiologiia. 2020;60(6):15–29. DOI: 10.18087/cardio.2020.6.n1226

56. The RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL et al. Dexamethasone in Hospitalized Patients with Covid-19 – Preliminary Report. New England Journal of Medicine. 2020; NEJMoa2021436. [Epub ahead of print]. DOI: 10.1056/NEJMoa2021436

57. Ramiro S, Mostard RLM, Magro-Checa C, van Dongen CMP, Dormans T, Buijs J et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Annals of the Rheumatic Diseases. 2020;79(9):1143–51. DOI: 10.1136/annrheumdis-2020-218479

58. Sinha P, Matthay MA, Calfee CS. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Internal Medicine. 2020; [Epub ahead of print]. DOI: 10.1001/jamainternmed.2020.3313

59. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5

60. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–62. DOI: 10.1016/S0140-6736(20)30566-3

61. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z et al. D‐dimer levels on admission to predict in‐hospital mortality in patients with Covid‐19. Journal of Thrombosis and Haemostasis. 2020;18(6):1324–9. DOI: 10.1111/jth.14859

62. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis. 2020;18(5):1094–9. DOI: 10.1111/jth.14817

63. Wichmann D, Sperhake J-P, Lütgehetmann M, Steurer S, Edler C, Heinemann A et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Annals of Internal Medicine. 2020;173(4):268–77. DOI: 10.7326/M20-2003

64. Paranjpe I, Fuster V, Lala A, Russak AJ, Glicksberg BS, Levin MA et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. Journal of the American College of Cardiology. 2020;76(1):122–4. DOI: 10.1016/j.jacc.2020.05.001

65. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research. 2020; 191:145–7. DOI: 10.1016/j.thromres.2020.04.013

66. Soylu K, Gedikli Ö, Ekşi A, Avcıoğlu Y, Soylu Aİ, Yüksel S et al. Neutrophil-to-lymphocyte ratio for the assessment of hospital mortality in patients with acute pulmonary embolism. Archives of Medical Science. 2016; 1:95–100. DOI: 10.5114/aoms.2016.57585

67. Price LC, McCabe C, Garfield B, Wort SJ. Thrombosis and COVID-19 pneumonia: the clot thickens! European Respiratory Journal. 2020;56(1):2001608. DOI: 10.1183/13993003.01608-2020

68. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thrombosis Research. 2020; 191:148–50. DOI: 10.1016/j.thromres.2020.04.041

69. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thrombosis Research. 2020;191:9–14. DOI: 10.1016/j.thromres.2020.04.024

70. Criel M, Falter M, Jaeken J, Van Kerrebroeck M, Lefere I, Meylaerts L и др. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? European Respiratory Journal. 2020;56(1):2001201. DOI: 10.1183/13993003.01201-2020

71. Middeldorp S, Coppens M, Haaps TF, Foppen M, Vlaar AP, Müller MCA et al. Incidence of venous thromboembolism in hospitalized patients with COVID‐19. Journal of Thrombosis and Haemostasis. 2020;18(8):1995–2002. DOI: 10.1111/jth.14888

72. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. 2020;383(2):120–8. DOI: 10.1056/NEJMoa2015432

73. Bryce C, Grimes Z, Pujadas E, Ahuja S, Beasley MB, Albrecht R et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. Pathology. 2020. Av. at: https://www.medrxiv.org/content/10.1101/2020.05.18.20099960v1.

74. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. The Lancet Rheumatology. 2020;2(7):e437–45. DOI: 10.1016/S2665-9913(20)30121-1

75. Dorward DA, Russell CD, Um IH, Elshani M, Armstrong SD, PenriceRandal R et al. Tissue-specific tolerance in fatal Covid-19. Infectious Diseases (except HIV/AIDS). 2020. Av. at: https://www.medrxiv.org/content/10.1101/2020.07.02.20145003v1.

76. Iba T, Levi M, Levy JH. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis. 2020;46(01):089–95. DOI: 10.1055/s-0039-1694995

77. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–40. DOI: 10.1182/blood.2020006000

78. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V et al. Hypercoagulability of COVID‐19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. Journal of Thrombosis and Haemostasis. 2020;18(7):1738–42. DOI: 10.1111/jth.14850

79. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020;18(4):844–7. DOI: 10.1111/jth.14768

80. Oudkerk M, Büller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud TC et al. Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. Radiology. 2020;201629. [Epub ahead of print]. DOI: 10.1148/radiol.2020201629

81. Llitjos J, Leclerc M, Chochois C, Monsallier J, Ramakers M, Auvray M et al. High incidence of venous thromboembolic events in anticoagulated severe COVID‐19 patients. Journal of Thrombosis and Haemostasis. 2020;18(7):1743–6. DOI: 10.1111/jth.14869

82. Gavioli EM, Sikorska G, Man A, Rana J, Vider E. Current Perspectives of Anticoagulation in Patients with COVID-19. Journal of Cardiovascular Pharmacology. 2020;76(2):146–50. DOI: 10.1097/ FJC.0000000000000861

83. Wise J. Covid-19 and thrombosis: what do we know about the risks and treatment? BMJ. 2020;369:m2058. DOI: 10.1136/bmj.m2058

84. Wang T, Chen R, Liu C, Liang W, Guan W, Tang R et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. The Lancet Haematology. 2020;7(5): e362–3. DOI: 10.1016/S2352-3026(20)30109-5

85. Spyropoulos AC, Ageno W, Barnathan ES. Hospital-based use of thromboprophylaxis in patients with COVID-19. The Lancet. 2020;395(10234):e75. DOI: 10.1016/S0140-6736(20)30926-0

86. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. Journal of the American College of Cardiology. 2020;75(23):2950–73. DOI: 10.1016/j.jacc.2020.04.031

87. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology. 2014;15(2):135–47. DOI: 10.1038/nrm3737

88. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunological Reviews. 2015;265(1):130–42. DOI: 10.1111/imr.12287

89. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology. 2009;10(3):241–7. DOI: 10.1038/ni.1703

90. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The Role of Interleukin 6 During Viral Infections. Frontiers in Microbiology. 2019;10:1057. DOI: 10.3389/fmicb.2019.01057

91. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerging Microbes & Infections. 2020;9(1):1123–30. DOI: 10.1080/22221751.2020.1770129

92. Bulat V, Situm M, Azdajic MD, Likic R. Potential role of IL‐17 blocking agents in the treatment of severe COVID‐19? British Journal of Clinical Pharmacology. 2020; bcp.14437. [Epub ahead of print]. DOI: 10.1111/bcp.14437

93. Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. The Lancet. 2020;395(10234):1407–9. DOI: 10.1016/S0140-6736(20)30858-8

94. Ucciferri C, Auricchio A, Di Nicola M, Potere N, Abbate A, Cipollone F et al. Canakinumab in a subgroup of patients with COVID-19. The Lancet Rheumatology. 2020;2(8):e457-ee458. DOI: 10.1016/S2665-9913(20)30167-3

95. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine. 2017;377(12):1119–31. DOI: 10.1056/NEJMoa1707914

96. Ministry of Health of Russian Federation. Temporary guidelines of the Ministry of health of the Russian Federation “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)”. Version 4 of 27.03.2020. Moscow. Av. at: https://static-3.rosminzdrav.ru/system/attachments/attaches/000/049/877/original/COVID19_recomend_v4.pdf.

97. Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. Journal of Allergy and Clinical Immunology. 2020;146(1):137-146.e3. DOI: 10.1016/j.jaci.2020.05.019

98. Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nature Reviews Rheumatology. 2019;15(8):491–501. DOI: 10.1038/s41584-019-0243-5

99. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nature Reviews Drug Discovery. 2012;11(10):763–76. DOI: 10.1038/nrd3794

100. Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nature Reviews Immunology. 2020;20(5):271–2. DOI: 10.1038/s41577-020-0312-7

101. Carugno A, Gambini DM, Raponi F, Vezzoli P, Locatelli AGC, Di Mercurio M et al. COVID-19 and biologics for psoriasis: A high-epidemic area experience – Bergamo, Lombardy, Italy. Journal of the American Academy of Dermatology. 2020;83(1):292–4. DOI: 10.1016/j.jaad.2020.04.165

102. Di Lernia V, Bombonato C, Motolese A. COVID‐19 in an elderly patient treated with secukinumab. Dermatologic Therapy. 2020;e13580. [Epub ahead of print]. DOI: 10.1111/dth.13580

103. Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death & Differentiation. 2012;19(1):5–12. DOI: 10.1038/cdd.2011.159

104. Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmunity Reviews. 2020;19(7):102567. DOI: 10.1016/j.autrev.2020.102567

105. Clancy CJ, Nguyen MH. Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect? Clinical Infectious Diseases. 2020; ciaa524. [Epub ahead of print]. DOI: 10.1093/cid/ciaa524

106. FitzGerald JD, Dalbeth N, Mikuls T, Brignardello‐Petersen R, Guyatt G, Abeles AM et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care & Research. 2020;72(6):744–60. DOI: 10.1002/acr.24180

107. Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. New England Journal of Medicine. 2019;381(26):2497–505. DOI: 10.1056/NEJMoa1912388

108. Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018; 269:262–71. DOI: 10.1016/j.atherosclerosis.2017.12.027

109. Lu Y, Chen J, Xiao M, Li W, Miller DD. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site. Pharmaceutical Research. 2012;29(11):2943–71. DOI: 10.1007/s11095-012-0828-z

110. Deftereos SG, Giannopoulos G, Vrachatis DA, Siasos GD, Giotaki SG, Gargalianos P et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized with Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Network Open. 2020;3(6): e2013136. DOI: 10.1001/jamanetworkopen.2020.13136

111. Montreal Heart Institute. Colchicine Coronavirus SARS-CoV2 Trial (COLCORONA) (COVID-19). ClinicalTrials.gov Identifier: NCT04322682.

112. Population Health Research Institute. The ECLA PHRI COLCOVID Trial. Effects of Colchicine on Moderate/High-risk Hospitalized COVID-19 Patients. (COLCOVID). ClinicalTrials.gov Identifier: NCT04328480.

113. Lomonosov Moscow State University Medical Research and Educational Center. COLchicine Versus Ruxolitinib and Secukinumab In Open Prospective Randomized Trial (COLORIT). ClinicalTrials. gov Identifier: NCT04403243. Av. at: https://clinicaltrials.gov/ct2/show/NCT04403243. 2020 г.

114. Carfì A, Bernabei R, Landi F, for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603–5. DOI: 10.1001/jama.2020.12603


Review

For citations:


Mareev V.Yu., Orlova Ya.A., Pavlikova E.P., Akopyan Z.A., Matskeplishvili S.T., Plisyk A.G., Seredenina E.M., Potapenko A.V., Malakhov P.S., Samokhodskaya L.M., Mershina Е.А., Sinitsyn V.E., Asratyan D.A., Zhdanova E.A., Mareev Yu.V., Begrambekova Yu.L., Shatochina E.A., Kamalov А.А. Proactive anti-inflammatory and anticoagulant therapy in the treatment of advanced stages of novel coronavirus infection (COVID-19). Case Series and Study Design: COLchicine versus ruxolitinib and secukinumab in open prospective randomIzed trial (COLORIT). Kardiologiia. 2020;60(9):4-21. https://doi.org/10.18087/cardio.2020.9.n1338

Views: 10932


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)