Factors Associated with the Increase in Spatial and Frontal QRS-T Angles in Patients with Inferior Myocardial Infarction
https://doi.org/10.18087/cardio.2020.11.n1295
Abstract
Aim To identify clinical, echocardiographic, and angiographic factors related with an increase in the frontal QRS-T angle (fQRS-T) and the spatial QRS-T angle (sQRS-T) in patients with inferior myocardial infarction.
Material and methods The study included 128 patients aged (median [25th percentile; 75th percentile]) 59.5 [51.5; 67.0] years diagnosed with inferior wall acute myocardial infarction. fQRS-T was calculated as a module of difference between the QRS axis and the Т axis in the frontal plane. sQRS-T was calculated by a synthesized vectorcardiogram as a spatial angle between the QRS and Т integral vectors.
Results The fQRS-T for the group was 54.0 [18; 80] and sQRS-T was 80.1 [53; 110]. The correlation coefficient for fQRS-T and sQRS-T values was 0.42 (p<0.001). Both fQRS-T >80° and sQRS-T >110° compared to their lower values were associated with a higher frequency of history of postinfarction cardiosclerosis (44% and 12 %, respectively; p<0.05), a lower left ventricular ejection fraction (51 [47; 60]% at fQRS-T >80° and 55 [50; 60]% at fQRS-T <80° (p<0,05); 49 [44; 57]% at sQRS-T >110° and 57 [51; 60] % at sQRS-T <110° (p<0.01); more frequent development of acute heart failure (16 and 2 %, respectively; p<0.05); and early postinfarction angina (13 and 2 %, respectively; p<0.05). The increased fQRS-T was associated with a higher incidence of damage to the circumflex artery (45 and 20 %, respectively; p<0.05). The increased sQRS-T was associated with a history of arterial hypertension (97 and 76 %, respectively; p<0.05), chronic heart failure (22 and 3 %, respectively; p<0.05), chronic kidney disease (19 and 4 %, respectively; p<0.05), and a larger myocardial lesion (mean number of damaged segments by echocardiography was 3.8 [2; 6] at sQRS-T >110° and 2.6 [1; 4] at sQRS-T <110°; p<0.01). sQRS-T was significantly greater in multivascular damage (87 [68; 121]° than in one- or two-vascular damage (72 [51; 100]°; p<0.05). sQRS-T values were significantly lower with spontaneous reperfusion (66 [29; 79] than without spontaneous reperfusion (77 [55; 115]°; p<0.05).
Conclusion In patients after inferior wall acute myocardial infarction, increases in fQRS-T and sQRS-T were associated with more severe damage of coronary vasculature, decreased left ventricular ejection fraction, and more severe course of disease.
Keywords
About the Authors
T. A. SakhnovaRussian Federation
Senior Researcher, ECG Laboratory
E. V. Blinova
Russian Federation
Researcher, ECG Laboratory
I. N. Merkulova
Russian Federation
Leading Researcher, Department of Emergency Cardiology
R. M. Shakhnovich
Russian Federation
Leading Researcher, Department of Emergency Cardiology
N. S. Zhukova
Russian Federation
Senior Researcher, Department of Emergency Cardiology
T. S. Sukhinina
Russian Federation
Researcher, Department of Emergency Cardiology
N. A. Barysheva
Russian Federation
junior researcher, Department of Emergency Cardiology
I. I. Staroverov
Russian Federation
Chief Researcher, Department of Emergency Cardiology
References
1. Sakhnova T.A., Blinova E.V., Yurasova E.S. The spatial QRS-T angle and ventricular gradient: diagnostic and prognostic value. Cardiological Bulletin. 2017;12(2):70–5.
2. Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH, Malik M. Analysis of 12-Lead T-Wave Morphology for Risk Stratification After Myocardial Infarction. Circulation. 2000;102(11):1252–7. DOI: 10.1161/01.CIR.102.11.1252
3. Tse G, Gong M, Wong CW, Chan C, Georgopoulos S, Chan YS et al. Total cosine R-to-T for predicting ventricular arrhythmic and mortality outcomes: A systematic review and meta-analysis. Annals of Noninvasive Electrocardiology. 2018;23(2):e12495. DOI: 10.1111/anec.12495
4. Colluoglu T, Tanriverdi Z, Unal B, Ozcan EE, Dursun H, Kaya D. The role of baseline and post‐procedural frontal plane QRS‐T angles for cardiac risk assessment in patients with acute STEMI. Annals of Noninvasive Electrocardiology. 2018;23(5):e12558. DOI: 10.1111/anec.12558
5. Sawant AC, Bhardwaj A, Srivatsa S, Sridhara S, Prakash MPH, Kanwar N et al. Prognostic value of frontal QRS-T angle in predicting survival after primary percutaneous coronary revascularization/coronary artery bypass grafting for ST-elevation myocardial infarction. Indian Heart Journal. 2019;71(6):481–7. DOI: 10.1016/j.ihj.2019.09.008
6. Strebel I, Twerenbold R, Wussler D, Boeddinghaus J, Nestelberger T, du Fay de Lavallaz J et al. Incremental diagnostic and prognostic value of the QRS-T angle, a 12-lead ECG marker quantifying heterogeneity of depolarization and repolarization, in patients with suspected nonST-elevation myocardial infarction. International Journal of Cardiology. 2019;277:8–15. DOI: 10.1016/j.ijcard.2018.09.040
7. Raposeiras-Roubín S, Virgós-Lamela A, Bouzas-Cruz N, LópezLópez A, Castiñeira-Busto M, Fernández-Garda R et al. Usefulness of the QRS-T Angle to Improve Long-Term Risk Stratification of Patients With Acute Myocardial Infarction and Depressed Left Ventricular Ejection Fraction. The American Journal of Cardiology. 2014;113(8):1312–9. DOI: 10.1016/j.amjcard.2014.01.406
8. Lown MT, Munyombwe T, Harrison W, West RM, Hall CA, Morrell C et al. Association of Frontal QRS-T Angle–Age Risk Score on Admission Electrocardiogram With Mortality in Patients Admitted With an Acute Coronary Syndrome. The American Journal of Cardiology. 2012;109(3):307–13. DOI: 10.1016/j.amjcard.2011.09.014
9. Zhang Z, Rautaharju PM, Prineas RJ, Tereshchenko L, Soliman EZ. Electrocardiographic QRS-T angle and the risk of incident silent myocardial infarction in the Atherosclerosis Risk in Communities study. Journal of Electrocardiology. 2017;50(5):661–6. DOI: 10.1016/j.jelectrocard.2017.05.001
10. May O, Graversen CB, Johansen MØ, Arildsen H. A large frontal QRS-T angle is a strong predictor of the long-term risk of myocardial infarction and all-cause mortality in the diabetic population. Journal of Diabetes and its Complications. 2017;31(3):551–5. DOI: 10.1016/j.jdiacomp.2016.12.001
11. Kurisu S, Nitta K, Sumimoto Y, Ikenaga H, Ishibashi K, Fukuda Y et al. Myocardial perfusion defect assessed by single-photon emission computed tomography and frontal QRS-T angle in patients with prior anterior myocardial infarction. Heart and Vessels. 2019;34(6):971–5. DOI: 10.1007/s00380-018-01330-9
12. Kurisu S, Nitta K, Sumimoto Y, Ikenaga H, Ishibashi K, Fukuda Y et al. Effects of Myocardial Perfusion Defect on the Frontal QRS-T Angle in Anterior Versus Inferior Myocardial Infarction. Internal Medicine. 2020;59(1):23–8. DOI: 10.2169/internalmedicine.3348-19
13. Li Y-H, Ren X-J, Han Z-H, Wang Y-L, Wang Y, Zhang J-R et al. Value of the frontal planar QRS-T angle on cardiac dysfunction in patients with old myocardial infarction. International Journal of Clinical and Experimental Medicine. 2013;6(8):688–92. PMID: 24040478
14. Dogan A, Kahraman S. Frontal QRS-T angle predicts coronary atherosclerotic burden in patients with ST segment elevation myocardial infarction. Journal of Electrocardiology. 2020;58:155–9. DOI: 10.1016/j.jelectrocard.2019.11.042
15. Erdogan G, Yontar OC, Yenercag M, Gul S, Arslan U. Frontal QRS-T angle predicts syntax score in patients with non-ST elevation myocardial infarction. Journal of Electrocardiology. 2020;61:86–91. DOI: 10.1016/j.jelectrocard.2020.06.008
16. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography. 2015;28(1):1-39.e14. DOI: 10.1016/j.echo.2014.10.003
17. Schocken DD. Electrocardiographic left ventricular strain pattern: Everything old is new again. Journal of Electrocardiology. 2014;47(5):595–8. DOI: 10.1016/j.jelectrocard.2014.06.005
18. Nakamura N, Hirata K, Imanishi T, Kuroi A, Arita Y, Ikejima H et al. Electrocardiographic strain and endomyocardial radial strain in hypertensive patients. International Journal of Cardiology. 2011;150(3):319–24. DOI: 10.1016/j.ijcard.2010.04.049
19. Nishikage T, Takeuchi M, Nakai H, Otsuji Y, Lang RM. Possible link between strain ST-T change on the electrocardiogram and subendocardial dysfunction assessed by two-dimensional speckle-tracking echocardiography. European Journal of Echocardiography. 2010;11(5):451–9. DOI: 10.1093/ejechocard/jeq001
20. Ryabykina G.V., Alesenko D.V., Sobolev A.V. Causes of low sensitivity ECG-diagnosis of inferoposterial and posterolateral myocardial infarction. Cardiological Bulletin. 2019;14(4):66–75. DOI: 10.36396/MS.2019.15.4.009
Review
For citations:
Sakhnova T.A., Blinova E.V., Merkulova I.N., Shakhnovich R.M., Zhukova N.S., Sukhinina T.S., Barysheva N.A., Staroverov I.I. Factors Associated with the Increase in Spatial and Frontal QRS-T Angles in Patients with Inferior Myocardial Infarction. Kardiologiia. 2020;60(11):76–83. https://doi.org/10.18087/cardio.2020.11.n1295