Personalized medicine in non-communicable diseases: latest advances and future prospects
https://doi.org/10.18087/cardio.2021.11.n1233
Abstract
Since the human genome was decoded more than 15 years ago, there has been a huge leap forward in the development of genomic and post-genomic technologies. Personalized medicine is engaged in implementing these technologies in clinical practice by developing new methods for risk assessment, diagnosis, and treatment of diseases taking into account individual features of the patient. Significant progress has been achieved in decoding genetic bases of chronic noninfectious diseases; new markers for the risk of complications and targets for effects of drugs are being searched for. This review highlights promising directions in the development of personalized medicine, the problems facing modern scientists, and possible ways to solve them
Keywords
About the Authors
O. M. DrapkinaRussian Federation
MD, PhD, corresponding member of the RAS, professor, director
A. A. Ivanova
Russian Federation
student
References
1. Collins F. Has the revolution arrived? Nature. 2010;464(7289):674–5. DOI: 10.1038/464674a
2. Hood L, Rowen L. The human genome project: big science transforms biology and medicine. Genome Medicine. 2013;5(9):79. DOI: 10.1186/gm483
3. Kontsevaya A.V., Mukaneeva D.K., Myrzamatova A.O., Balanova Yu.A., Khudyakov M.B., Drapkina O.M. Economic damage of risk factors associated with morbidity and mortality from major chronic non-communicable diseases in Russia in 2016. Cardiovascular Therapy and Prevention. 2020;19(1):48–55. DOI: 10.15829/1728-8800-2020-1-2396
4. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The Lancet. 2004;364(9438):937–52. DOI: 10.1016/S0140-6736(04)17018-9
5. Leon-Mimila P, Wang J, Huertas-Vazquez A. Relevance of MultiOmics Studies in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine. 2019;6:91. DOI: 10.3389/fcvm.2019.00091
6. Federal State Statistics Service. The Demographic Yearbook of Russia 2019. Statistical handbook. -M.: Rosstat;2019. - 252 p. ISBN 978-5-89476-479-5
7. Won H-H, Natarajan P, Dobbyn A, Jordan DM, Roussos P, Lage K et al. Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease. PLOS Genetics. 2015;11(10):e1005622. DOI: 10.1371/journal.pgen.1005622
8. van der Harst P, Verweij N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease. Circulation Research. 2018;122(3):433–43. DOI: 10.1161/CIRCRESAHA.117.312086
9. Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults. Journal of the American College of Cardiology. 2018;72(16):1883–93. DOI: 10.1016/j.jacc.2018.07.079
10. Said MA, Verweij N, van der Harst P. Associations of Combined Genetic and Lifestyle Risks With Incident Cardiovascular Disease and Diabetes in the UK Biobank Study. JAMA Cardiology. 2018;3(8):693–702. DOI: 10.1001/jamacardio.2018.1717
11. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics. 2019;51(2):237–44. DOI: 10.1038/s41588-018-0307-5
12. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. DOI: 10.1038/nature14177
13. Karlsson Linnér R, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics. 2019;51(2):245–57. DOI: 10.1038/s41588-018-0309-3
14. Baragetti A, Palmen J, Garlaschelli K, Grigore L, Pellegatta F, Tragni E et al. Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. Journal of Internal Medicine. 2015;277(4):478–87. DOI: 10.1111/joim.12282
15. D’Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G. Association Between Shortened Leukocyte Telomere Length and Cardiometabolic Outcomes: Systematic Review and Meta-Analysis. Circulation: Cardiovascular Genetics. 2015;8(1):82–90. DOI: 10.1161/CIRCGENETICS.113.000485
16. van der Harst P, de Windt LJ, Chambers JC. Translational Perspective on Epigenetics in Cardiovascular Disease. Journal of the American College of Cardiology. 2017;70(5):590–606. DOI: 10.1016/j.jacc.2017.05.067
17. Costantino S, Libby P, Kishore R, Tardif J-C, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. European Heart Journal. 2018;39(47):4150–8. DOI: 10.1093/eurheartj/ehx568
18. Muka T, Koromani F, Portilla E, O’Connor A, Bramer WM, Troup J et al. The role of epigenetic modifications in cardiovascular disease: A systematic review. International Journal of Cardiology. 2016;212:174–83. DOI: 10.1016/j.ijcard.2016.03.062
19. Breitling LP, Salzmann K, Rothenbacher D, Burwinkel B, Brenner H. Smoking, F2RL3 methylation, and prognosis in stable coronary heart disease. European Heart Journal. 2012;33(22):2841–8. DOI: 10.1093/eurheartj/ehs091
20. Nakatochi M, Ichihara S, Yamamoto K, Naruse K, Yokota S, Asano H et al. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clinical Epigenetics. 2017;9(1):54. DOI: 10.1186/s13148-017-0353-3
21. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology. 2018;9:402. DOI: 10.3389/fendo.2018.00402
22. Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F, Gilson G et al. Use of Circulating MicroRNAs to Diagnose Acute Myocardial Infarction. Clinical Chemistry. 2012;58(3):559–67. DOI: 10.1373/clinchem.2011.173823
23. Seronde M-F, Vausort M, Gayat E, Goretti E, Ng LL, Squire IB et al. Circulating microRNAs and Outcome in Patients with Acute Heart Failure. PLOS ONE. 2015;10(11):e0142237. DOI: 10.1371/journal.pone.0142237
24. Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa Martins P et al. Circulating miR-29a, Among Other UpRegulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients With Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2014;63(9):920–7. DOI: 10.1016/j.jacc.2013.09.041
25. Costantino S, Libby P, Kishore R, Tardif J-C, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. European Heart Journal. 2018;39(47):4150–8. DOI: 10.1093/eurheartj/ehx568
26. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nature Communications. 2016;7(1):12724. DOI: 10.1038/ncomms12724
27. Bentley AR, Sung YJ, Brown MR, Winkler TW, Kraja AT, Ntalla I et al. Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics. 2019;51(4):636–48. DOI: 10.1038/s41588-019-0378-y
28. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The Human Microbiome Project. Nature. 2007;449(7164):804–10. DOI: 10.1038/nature06244
29. Drapkina O.M., Kaburova A.N. Gut microbiota – a new companion on the path of cardiovascular diseases progression: surprising roles of long-time neighbors. Rational Pharmacotherapy in Cardiology. 2016;12(1):66–71. DOI: 10.20996/1819-6446-2016-12-1-66-71
30. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. New England Journal of Medicine. 2013;368(17):1575–84. DOI: 10.1056/NEJMoa1109400
31. Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C et al. Alterations of the Gut Microbiome in Hypertension. Frontiers in Cellular and Infection Microbiology. 2017;7:381. DOI: 10.3389/fcimb.2017.00381
32. Li H, Liu B, Song J, An Z, Zeng X, Li J et al. Characteristics of Gut Microbiota in Patients with Hypertension and/or Hyperlipidemia: A Cross-Sectional Study on Rural Residents in Xinxiang County, Henan Province. Microorganisms. 2019;7(10):399. DOI: 10.3390/microorganisms7100399
33. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of Obesity. 2016;2016:7353642. DOI: 10.1155/2016/7353642
34. Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. New England Journal of Medicine. 2020;382(16):1520–30. DOI: 10.1056/NEJMoa1913805
35. Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJG, Zeiher AM et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology. 2012;14(3):249–56. DOI: 10.1038/ncb2441
36. Dichgans M, Pulit SL, Rosand J. Stroke genetics: discovery, biology, and clinical applications. The Lancet Neurology. 2019;18(6):587–99. DOI: 10.1016/S1474-4422(19)30043-2
37. Wei Y, Wang D, Yang H, Cao H. Cytochrome P450 CYP 2C19*2 Associated with Adverse 1-Year Cardiovascular Events in Patients with Acute Coronary Syndrome. PLOS ONE. 2015;10(7):e0132561. DOI: 10.1371/journal.pone.0132561
38. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, FunckBrentano C et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 2020;41(3):407–77. DOI: 10.1093/eurheartj/ehz425
39. Ezhov M.V., Sergienko I.V., Rozhkova Т.A., Kukharchuk V.V., Konovalov G.A., Meshkov A.N. et al. Diagnosis and treatment of family hypercholesterolemia (russian guidelines). The Bulletin of Contemporary Clinical Medicine. 2017;10(2):72–9. DOI: 10.20969/VSKM.2017.10(2).72-79
Review
For citations:
Drapkina O.M., Ivanova A.A. Personalized medicine in non-communicable diseases: latest advances and future prospects. Kardiologiia. 2021;61(11):98-103. (In Russ.) https://doi.org/10.18087/cardio.2021.11.n1233