Genetic Variants rs1049255 CYBA and rs2333227 MPO are Associated with Susceptibility to Coronary Artery Disease in Russian Residents of Central Russia
https://doi.org/10.18087/cardio.2020.10.n1229
Abstract
Aim To study association of single-nucleotide polymorphisms rs1049255 CYBA and rs2333227 MPO with development of ischemic heart disease (IHD) in Russian residents of Central Russia.
Material and methods The study material was DNA samples from 436 patients with IHD (265 men, 171 women; mean age, 61 years) and 370 sex- and age-matched arbitrarily healthy volunteers (209 men, 161 women; mean age, 60 years). Genotyping was performed by allelic discrimination with TaqMan probes.
Results Comparative analysis of genotype frequency (log-additive regression model) showed that SNP rs1049255 CYBA (odds ratio, OR, 0.79 at 95 % confidence interval, CI, from 0.65 to 0.96; p=0.02) and rs2333227 MPO (OR 0.72 at 95 % CI from 0.55 to 0.95; p=0.02) were associated with a decreased risk of IHD adjusted for sex and age. Analysis of sex-specific effects showed that the protective effect of rs1049255 CYBA was evident only in men (OR 0.72 at 95 % CI from 0.55 to 0.94; p=0.16).
Conclusion The study demonstrated a protective effect of rs1049255 CYBA and rs2333227 MPO with respect of IHD in Russians. The protective effect of rs1049255 CYBA was observed only in men.
Keywords
About the Author
O. Yu. BushuevaRussian Federation
Associate Professor, Department of Biology, Medical Genetics and Ecology, Head of the Laboratory for Genomic Research, Research Institute of Genetic and Molecular Epidemiology
References
1. Laslett LJ, Alagona P, Clark BA, Drozda JP, Saldivar F, Wilson SR et al. The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy Issues. Journal of the American College of Cardiology. 2012;60(25):S1–49. DOI: 10.1016/j.jacc.2012.11.002
2. Lubrano V, Pingitore A, Traghella I, Storti S, Parri S, Berti S et al. Emerging Biomarkers of Oxidative Stress in Acute and Stable Coronary Artery Disease: Levels and Determinants. Antioxidants. 2019;8(5):115. DOI: 10.3390/antiox8050115
3. Golubenko M.V., Babushkina N.P., Zarubin A.A., Salakhov R.R., Makeeva O.A., Markova V.V. et al. Association of the mitochondrial DNA haplogroup H1 variants with the risk of acute cardiovascular events. Research Results in Biomedicine. 2019;5(4):19–31. DOI: 10.18413/2658-6533-2019-5-4-0-2
4. Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal. 2020;41(24):2313–30. DOI: 10.1093/eurheartj/ehz962
5. Sorescu D, Weiss D, Lassègue B, Clempus RE, Szöcs K, Sorescu GP et al. Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis. Circulation. 2002;105(12):1429–35. DOI: 10.1161/01.CIR.0000012917.74432.66
6. Prieto-Bermejo Rodrigo, Hernández-Hernández Angel. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis. Antioxidants. 2017;6(2):32. DOI: 10.3390/antiox6020032
7. Liu C, Rennie WA, Carmack CS, Kanoria S, Cheng J, Lu J et al. Effects of genetic variations on microRNA: target interactions. Nucleic Acids Research. 2014;42(15):9543–52. DOI: 10.1093/nar/gku675
8. Macías-Reyes A, Rodríguez-Esparragón F, Caballero-Hidalgo A, Hernández-Trujillo Y, Medina A, Rodríguez-Pérez JC. Insight into the role of CYBA A640G and C242T gene variants and coronary heart disease risk. A case-control study. Free Radical Research. 2008;42(1):82–92. DOI: 10.1080/10715760701796918
9. Liu S, Li X, Wang J, Ji J, Liu J, Lin Y et al. The rs9932581 and rs1049255 Polymorphisms in CYBA is not Associated with Preeclampsia in Chinese Han Women. Cellular Physiology and Biochemistry. 2016;39(4):1471–8. DOI: 10.1159/000447850
10. Winterbourn CC, Vissers MC, Kettle AJ. Myeloperoxidase: Current Opinion in Hematology. 2000;7(1):53–8. DOI: 10.1097/00062752-200001000-00010
11. Zelzer S, Enko D, Pilz S, Tomaschitz A, März W, Meinitzer A. Myeloperoxidase, asymmetric dimethyl-arginine and the renin-angiotensinaldosterone-system in cardiovascular risk patients: Cross-sectional findings from the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clinical Biochemistry. 2017;50(13–14):739–45. DOI: 10.1016/j.clinbiochem.2017.03.013
12. Desikan R, Narasimhulu CA, Khan B, Rajagopalan S, Parthasarathy S. Myeloperoxidase (MPO): Do We Need Inhibitors? In: Mechanisms of Vascular Defects in Diabetes Mellitus [ISBN: 978-3-319-60323-0]. Kartha CC, Ramachandran S, Pillai RM, editors -Cham: Springer International Publishing; 2017. - P. 535-571. [DOI: 10.1007/978-3-319-60324-7_24].
13. Afshinnia F, Zeng L, Byun J, Gadegbeku CA, Magnone MC, Whatling C et al. Myeloperoxidase Levels and Its Product 3-Chlorotyrosine Predict Chronic Kidney Disease Severity and Associated Coronary Artery Disease. American Journal of Nephrology. 2017;46(1):73–81. DOI: 10.1159/000477766
14. Nikpoor B, Turecki G, Fournier C, Théroux P, Rouleau GA. A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in French-Canadians. American Heart Journal. 2001;142(2):336–9. DOI: 10.1067/mhj.2001.116769
15. Tang N, Wang Y, Mei Q. Myeloperoxidase G-463A polymorphism and susceptibility to coronary artery disease: A meta-analysis. Gene. 2013;523(2):152–7. DOI: 10.1016/j.gene.2013.03.131
16. Chang C, Gao B, Liu Z, Mao J, Jiang G. The myeloperoxidase -463G/A polymorphism and coronary artery disease risk: A meta-analysis of 1938 cases and 1990 controls. Clinical Biochemistry. 2013;46(16–17):1644–8. DOI: 10.1016/j.clinbiochem.2013.09.002
17. Mandsorwale D, Nagtilak S, Lalchandani A, Srivastava AK. Role of-463 G/A genetic polymorphism & myeloperoxidase activity in prediction of cardiovascular disease. Scholars Journal of Applied Medical Sciences. 2014;2(4D):1402–7. [Av. at: http://saspublisher.com/wp-content/uploads/2014/07/SJAMS24D1402-1407.pdf]
18. Polonikov A, Kharchenko A, Bykanova M, Sirotina S, Ponomarenko I, Bocharova A et al. Polymorphisms of CYP2C8 , CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. Gene. 2017;627:451–9. DOI: 10.1016/j.gene.2017.07.004
19. Bushueva O, Solodilova M, Ivanov V, Polonikov A. Gender-specific protective effect of the -463G>A polymorphism of myeloperoxidase gene against the risk of essential hypertension in Russians. Journal of the American Society of Hypertension. 2015;9(11):902–6. DOI: 10.1016/j.jash.2015.08.006
20. Packer BR, Yeager M, Burdett L, Welch R, Beerman M, Qi L et al. SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Research. 2006;34(90001):D617–21. DOI: 10.1093/ nar/gkj151
21. Katsuyama M. NOX/NADPH Oxidase, the Superoxide-Generating Enzyme: Its Transcriptional Regulation and Physiological Roles. Journal of Pharmacological Sciences. 2010;114(2):134–46. DOI: 10.1254/jphs.10R01CR
22. Schirmer M, Hoffmann M, Kaya E, Tzvetkov M, Brockmöller J. Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity. The Pharmacogenomics Journal. 2008;8(4):297–304. DOI: 10.1038/sj.tpj.6500467
23. Dantas A, Franco M, Silva-Antonialli MM, Tostes RC, Fortes ZB, Nigro D et al. Gender differences in superoxide generation in microvessels of hypertensive rats: role of NAD(P)H-oxidase. Cardiovascular Research. 2004;61(1):22–9. DOI: 10.1016/j.cardiores.2003.10.010
24. Dikalov S, Itani H, Richmond B, Arslanbaeva L, Vergeade A, Rahman SMJ et al. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. American Journal of Physiology-Heart and Circulatory Physiology. 2019;316(3):H639–46. DOI: 10.1152/ajpheart.00595.2018
25. Baldus S, Rudolph V, Roiss M, Ito WD, Rudolph TK, Eiserich JP et al. Heparins Increase Endothelial Nitric Oxide Bioavailability by Liberating Vessel-Immobilized Myeloperoxidase. Circulation. 2006;113(15):1871–8. DOI: 10.1161/CIRCULATIONAHA.105.590083
26. Yang J, Cheng Y, Ji R, Zhang C. Novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia. American Journal of Physiology-Heart and Circulatory Physiology. 2006;291(6):H3087–93. DOI: 10.1152/ajpheart.00412.2006
27. Rodríguez-Pla A, Bosch-Gil JA, Rosselló-Urgell J, Huguet-Redecilla P, Stone JH, Vilardell-Tarres M. Metalloproteinase-2 and -9 in Giant Cell Arteritis: Involvement in Vascular Remodeling. Circulation. 2005;112(2):264–9. DOI: 10.1161/CIRCULATIONAHA.104.520114
28. Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T et al. Genome‐ wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nature Communications. 2018;9(1):3268. DOI: 10.1038/s41467-018-05512-x
Review
For citations:
Bushueva O.Yu. Genetic Variants rs1049255 CYBA and rs2333227 MPO are Associated with Susceptibility to Coronary Artery Disease in Russian Residents of Central Russia. Kardiologiia. 2020;60(10):47–54. https://doi.org/10.18087/cardio.2020.10.n1229