Infective Endocarditis with Unknown Etiology: Possibilities of Conquering and Role of Microbiologistics
https://doi.org/10.18087/cardio.2021.1.n1218
Abstract
Current infectious endocarditis (IE) is characterized by changes in its etiological and epidemiological profiles associated with increased incidence of IE of undetermined etiology. This requires a search for ways to enhance the effectivity of diagnosis. Microbiologistics along with high-tech methods becomes decisively important for identifying the pathogen by studying cultures of blood and tissues from the affected heart valve. This determines timely diagnosis and treatment to be introduced to medical practice as a component of personalized medicine. The article focuses on the validity and features of microbiological (cultural), immunochemical, and molecular biological [MALDI-TOF MS (matrix-activated laser desorption/ionization with time-of-flight mass spectrometry), polymerase chain reaction, sequencing] studies.
Keywords
About the Authors
E. O. KotovaRussian Federation
PhD, assistant of the department of internal diseases with the course in cardiology and functional diagnostics named after V.S. Moiseev
E. A. Domonova
Russian Federation
Ph.D. Sci. Biol., senior researcher of the department of molecular diagnostics and epidemiology
Zh. D. Kobalava
Russian Federation
correspondent member of Russian academy of science, M.D., PhD, professor, chef of the department of the internal diseases with the course in cardiology and functional diagnostics named after V.S. Moiseev
O. Y. Shipulina
Russian Federation
Ph.D. Sci. Med., Head of the molecular methods of diagnostics division of the department of molecular diagnostics and epidemiology
Y. L. Karaulova
Russian Federation
PhD, professor of the department of the internal diseases with the course in cardiology and functional diagnostics named after V.S. Moiseev
A. S. Pisaryuk
Russian Federation
PhD, assistant of the department of internal diseases with the course in cardiology and functional diagnostics named after V.S. Moiseev. Doctor of Functional diagnostics GBUZ "City Clinical Hospital named after VV Vinogradov DZM"
References
1. Habib G, Erba PA, Iung B, Donal E, Cosyns B, Laroche C et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: a prospective cohort study. European Heart Journal. 2019;40(39):3222–32. DOI: 10.1093/eurheartj/ehz620
2. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta J-P, Del Zotti F et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC) Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). European Heart Journal. 2015;36(44):3075–128. DOI: 10.1093/eurheartj/ehv319
3. Murdoch DR. Clinical Presentation, Etiology, and Outcome of Infective Endocarditis in the 21st Century: The International Collaboration on Endocarditis–Prospective Cohort Study. Archives of Internal Medicine. 2009;169(5):463–73. DOI: 10.1001/archinternmed.2008.603
4. Tyrin V.P. Infective endocarditis. 2nd edition, expanded and revised. -M.: GEOTAR-Media;2013. - 368 p. [Russian: Тюрин В.П. Инфекционные эндокардиты. 2-е издание, дополненное и переработанное. - М.: ГЭОТАР-Медиа, 2013. - 368с]. ISBN 978-5-9704-2080-5
5. Danilov A.I., Alekseeva I.V., Asner T.V., Vlasova E.E., Drozdovich E.L., Elokhina E.V. et al. Real practice of therapy of infective endocarditis in the Russian Federation: intermediate results of the MAESTRO study. Clinical microbiology and antimicrobial chemotherapy. 2013;15(2 S1):18–9.
6. Kotova E.O., Domonova E.A., Karaulova Yu.L., Milto A.S., Pisaryuk A.S., Silveistrova O.Yu. et al. Infective endocarditis: Importance of molecular biological techniques in etiological diagnosis. Therapeutic Archive. 2016;88(11):62–7. DOI: 10.17116/terarkh2016881162-67
7. Fournier P, Thuny F, Richet H, Lepidi H, Casalta J, Arzouni J et al. Comprehensive Diagnostic Strategy for Blood Culture–Negative Endocarditis: A Prospective Study of 819 New Cases. Clinical Infectious Diseases. 2010;51(2):131–40. DOI: 10.1086/653675
8. Moiseev V.S., Kobalava Zh.D., Pisaryuk A.S., Milto A.S., Kotova E.O., Karaulova Yu.L. et al. Infective Endocarditis in Moscow General Hospital: Clinical Characteristics and Outcomes (Single-Center 7 Years’ Experience). Kardiologiia. 2018;58(12):66–75. DOI: 10.18087/cardio.2018.12.10192
9. Morpeth S. Non-HACEK Gram-Negative Bacillus Endocarditis. Annals of Internal Medicine. 2007;147(12):829–35. DOI: 10.7326/0003-4819-147-12-200712180-00002
10. Baddour LM, Wilson WR, Bayer AS, Fowler VG, Tleyjeh IM, Rybak MJ et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation. 2015;132(15):1435–86. DOI: 10.1161/CIR.0000000000000296
11. Thuny F, Grisoli D, Collart F, Habib G, Raoult D. Management of infective endocarditis: challenges and perspectives. The Lancet. 2012;379(9819):965–75. DOI: 10.1016/S0140-6736(11)60755-1
12. Korber F, Zeller I, Grünstäudl M, Willinger B, Apfalter P, Hirschl AM et al. SeptiFast versus blood culture in clinical routine – A report on 3 years experience. Wiener klinische Wochenschrift. 2017;129(11– 12):427–34. DOI: 10.1007/s00508-017-1181-3
13. Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG, Ryan T et al. Proposed Modifications to the Duke Criteria for the Diagnosis of Infective Endocarditis. Clinical Infectious Diseases. 2000;30(4):633–8. DOI: 10.1086/313753
14. Małek-Elikowska M, Elikowski W, Lisiecka M, Szyszka A. Microbiological diagnostics of infective endocarditis in the light of the new guidelines of the European Society of Cardiology with particular focus on the molecular methods. Przeglad Lekarski. 2016;73(7):525–9. PMID: 29677426
15. Idelevich EA, Seifert H, Sundqvist M, Scudeller L, Amit S, Balode A et al. Microbiological diagnostics of bloodstream infections in Europe – an ESGBIES survey. Clinical Microbiology and Infection. 2019;25(11):1399–407. DOI: 10.1016/j.cmi.2019.03.024
16. Dubourg G, Lamy B, Ruimy R. Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: meeting the challenge to reduce the time to result. Clinical Microbiology and Infection. 2018;24(9):935–43. DOI: 10.1016/j.cmi.2018.03.031
17. Morton B, Nagaraja S, Collins A, Pennington SH, Blakey JD. A Retrospective Evaluation of Critical Care Blood Culture Yield – Do Support Services Contribute to the “Weekend Effect”? PLOS ONE. 2015;10(10):e0141361. DOI: 10.1371/journal.pone.0141361
18. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine. 2017;43(3):304–77. DOI: 10.1007/s00134-017-4683-6
19. Lamy B, Ferroni A, Henning C, Cattoen C, Laudat P. How to: accreditation of blood cultures’ proceedings. A clinical microbiology approach for adding value to patient care. Clinical Microbiology and Infection. 2018;24(9):956–63. DOI: 10.1016/j.cmi.2018.01.011
20. Liesman RM, Pritt BS, Maleszewski JJ, Patel R. Laboratory Diagnosis of Infective Endocarditis. Journal of Clinical Microbiology. 2017;55(9):2599–608. DOI: 10.1128/JCM.00635-17
21. Gould FK, Denning DW, Elliott TSJ, Foweraker J, Perry JD, Prendergast BD et al. Guidelines for the diagnosis and antibiotic treatment of endocarditis in adults: a report of the Working Party of the British Society for Antimicrobial Chemotherapy. Journal of Antimicrobial Chemotherapy. 2012;67(2):269–89. DOI: 10.1093/jac/dkr450
22. Patel R, Vetter EA, Harmsen WS, Schleck CD, Fadel HJ, Cockerill FR. Optimized Pathogen Detection with 30- Compared to 20-Milliliter Blood Culture Draws. Journal of Clinical Microbiology. 2011;49(12):4047–51. DOI: 10.1128/JCM.01314-11
23. Popov D.A., Ovseenko S.T., Vostrikova T.Yu. Express identification of positive blood cultures using direct MALDI-TOF mass spectrometry. Anesthesiology and Reanimatology. 2015;60(5):71–5.
24. Sohail MR, Gray AL, Baddour LM, Tleyjeh IM, Virk A. Infective endocarditis due to Propionibacterium species. Clinical Microbiology and Infection. 2009;15(4):387–94. DOI: 10.1111/j.1469-0691.2009.02703.x
25. Petti CA, Bhally HS, Weinstein MP, Joho K, Wakefield T, Reller LB et al. Utility of Extended Blood Culture Incubation for Isolation of Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella Organisms: a Retrospective Multicenter Evaluation. Journal of Clinical Microbiology. 2006;44(1):257–9. DOI: 10.1128/JCM.44.1.257-259.2006
26. Chambers ST, Murdoch D, Morris A, Holland D, Pappas P, Almela M et al. HACEK Infective Endocarditis: Characteristics and Outcomes from a Large, Multi-National Cohort. PLoS ONE. 2013;8(5):e63181. DOI: 10.1371/journal.pone.0063181
27. Habib G, Hoen B, Tornos P, Thuny F, Prendergast B, Vilacosta I et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. European Heart Journal. 2009;30(19):2369–413. DOI: 10.1093/eurheartj/ehp285
28. Lamas CC, Fournier P-E, Zappa M, Brandão TJD, Januário-da-Silva CA, Correia MG et al. Diagnosis of blood culture-negative endocarditis and clinical comparison between blood culture-negative and blood culture-positive cases. Infection. 2016;44(4):459–66. DOI: 10.1007/s15010-015-0863-x
29. Houpikian P, Raoult D. Blood Culture-Negative Endocarditis in a Reference Center: Etiologic Diagnosis of 348 Cases. Medicine. 2005;84(3):162–73. DOI: 10.1097/01.md.0000165658.82869.17
30. Geissdorfer W, Moos V, Moter A, Loddenkemper C, Jansen A, Tandler R et al. High Frequency of Tropheryma whipplei in Culture-Negative Endocarditis. Journal of Clinical Microbiology. 2012;50(2):216–22. DOI: 10.1128/JCM.05531-11
31. Maurin M, Eb F, Etienne J, Raoult D. Serological cross-reactions between Bartonella and Chlamydia species: implications for diagnosis. Journal of clinical microbiology. 1997;35(9):2283–7. DOI: 10.1128/JCM.35.9.2283-2287.1997
32. Cheng J, Hu H, Kang Y, Chen W, Fang W, Wang K et al. Identification of pathogens in culture-negative infective endocarditis cases by metagenomic analysis. Annals of Clinical Microbiology and Antimicrobials. 2018;17(1):43. DOI: 10.1186/s12941-018-0294-5
33. Cheng J, Hu H, Fang W, Shi D, Liang C, Sun Y et al. Detection of pathogens from resected heart valves of patients with infective endocarditis by next-generation sequencing. International Journal of Infectious Diseases. 2019;83:148–53. DOI: 10.1016/j.ijid.2019.03.007
34. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G et al. Integrative genomics viewer. Nature Biotechnology. 2011;29(1):24–6. DOI: 10.1038/nbt.1754
35. Speranskaya A.S. Sequencing Next Gen. P. 145-171. In: Ageeva M.R., Azarova V.S., Alvares Figeroa M.V., Veselova O.A., Gushin A.E., Dedkov V.G. et al. Molecular diagnostics of infectious diseases. -M.: RIPOL classic;2018. - 654 p. ISBN 978-5-386-12296-6
36. Maneg D, Sponsel J, Müller I, Lohr B, Penders J, Madlener K et al. Advantages and Limitations of Direct PCR Amplification of Bacterial 16S-rDNA from Resected Heart Tissue or Swabs Followed by Direct Sequencing for Diagnosing Infective Endocarditis: A Retrospective Analysis in the Routine Clinical Setting. BioMed Research International. 2016;2016:7923874. DOI: 10.1155/2016/7923874
37. Harris KA, Yam T, Jalili S, Williams OM, Alshafi K, Gouliouris T et al. Service evaluation to establish the sensitivity, specificity and additional value of broad-range 16S rDNA PCR for the diagnosis of infective endocarditis from resected endocardial material in patients from eight UK and Ireland hospitals. European Journal of Clinical Microbiology & Infectious Diseases. 2014;33(11):2061–6. DOI: 10.1007/s10096-014-2145-4
38. Strashnikova N.S., Martynova G.P., Salmina A.B., Olovyannikova R.Yа., Kutyakov V.A., Tohidpur A. Possibilities of using proteomic analysis in infectiology. Bulletin of Siberian Medicine. 2019;18(2):248–61. DOI: 10.20538/1682-0363-2019-2-248-261
39. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiology Reviews. 2012;36(2):380–407. DOI: 10.1111/j.1574- 6976.2011.00298.x
40. Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Direct Bacterial Identification from Positive Blood Culture Pellets. Journal of Clinical Microbiology. 2010;48(4):1481–3. DOI: 10.1128/JCM.01780-09
41. Ferreira L, Sanchez-Juanes F, Gonzalez-Avila M, Cembrero-Fucinos D, Herrero-Hernandez A, Gonzalez-Buitrago JM et al. Direct Identification of Urinary Tract Pathogens from Urine Samples by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of Clinical Microbiology. 2010;48(6):2110–5. DOI: 10.1128/JCM.02215-09
42. Machen A, Drake T, Wang YF (Wayne). Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria from Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method with MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System. PLoS ONE. 2014;9(2):e87870. DOI: 10.1371/journal.pone.0087870
43. Burckhardt I, Zimmermann S. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry To Detect Carbapenem Resistance within 1 to 2.5 Hours. Journal of Clinical Microbiology. 2011;49(9):3321–4. DOI: 10.1128/JCM.00287-11
44. Hooff GP, van Kampen JJA, Meesters RJW, van Belkum A, Goessens WHF, Luider TM. Characterization of β-Lactamase Enzyme Activity in Bacterial Lysates using MALDI-Mass Spectrometry. Journal of Proteome Research. 2012;11(1):79–84. DOI: 10.1021/pr200858r
45. Kostrzewa M, Sparbier K, Maier T, Schubert S. MALDI‐TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. PROTEOMICS – Clinical Applications. 2013;7(11– 12):767–78. DOI: 10.1002/prca.201300042
46. Rumbesht V.V., Matsionis A.E., Dyuzhikov A.A., Sarvilina I.V. Immunoproteomics of infective endocarditis of native heart valves. Medical Immunology. 2008;10(1):27–34.
47. Osipov G.A., Zybina N.N., Rodionov G.G. Experience of Using Mass Spectrometry of Microbial Markers in Laboratory Diagnostics. Medical Alphabet. 2013;1(3):64–7.
48. Brinkman CL, Vergidis P, Uhl JR, Pritt BS, Cockerill FR, Steckelberg JM et al. PCR-electrospray ionization mass spectrometry for direct detection of pathogens and antimicrobial resistance from heart valves in patients with infective endocarditis. Journal of Clinical Microbiology. 2013;51(7):2040–6. DOI: 10.1128/JCM.00304-13
49. Wallet F, Herwegh S, Decoene C, Courcol RJ. PCR-electrospray ionization time-of-flight mass spectrometry: a new tool for the diagnosis of infective endocarditis from heart valves. Diagnostic Microbiology and Infectious Disease. 2013;76(2):125–8. DOI: 10.1016/j.diagmicrobio.2013.02.007
50. Lepidi H, Houpikian P, Liang Z, Raoult D. Cardiac Valves in Patients with Q Fever Endocarditis: Microbiological, Molecular, and Histologic Studies. The Journal of Infectious Diseases. 2003;187(7):1097–106. DOI: 10.1086/368219
51. Morris AJ, Drinkovic D, Pottumarthy S, Strickett MG, MacCulloch D, Lambie N et al. Gram stain, culture, and histopathological examination findings for heart valves removed because of infective endocarditis. Clinical Infectious Diseases. 2003;36(6):697–704. DOI: 10.1086/367842
52. Munoz P, Bouza E, Marin M, Alcala L, Rodriguez Creixems M, Valerio M et al. Heart Valves Should Not Be Routinely Cultured. Journal of Clinical Microbiology. 2008;46(9):2897–901. DOI: 10.1128/JCM.02173-07
Review
For citations:
Kotova E.O., Domonova E.A., Kobalava Zh.D., Shipulina O.Y., Karaulova Y.L., Pisaryuk A.S. Infective Endocarditis with Unknown Etiology: Possibilities of Conquering and Role of Microbiologistics. Kardiologiia. 2021;61(1):87-97. (In Russ.) https://doi.org/10.18087/cardio.2021.1.n1218